24

Meaningful Models for Information

Access Systems
Jussi KARLGREN

24.1 Distributional models of language

Study of semantics has the general goal of modeling humgnibtic com-
petence as a theory, probing the constraints and limitatidhanguage as a
system of expression and representation, and of providimgage engineer-
ing applications with a model of meaning, appropriate teeigks. In general,
there is no need to design a semantic model intended forigahptocess-
ing to be neurologically or psychologically plausible buice human perfor-
mance is impressive in certain respects there certaingaisan to investigate
it to find if it can provide inspiration, examples, or congtta for implemen-
tations. Human information processing is efficient andréifss. The human
information processor is flexible, dynamic, ever learnahmgs not stumble at
inconsistencies, and does not require formal or explistrrirction.

What sort of demands would we want to pose on a model of meainorg
the standpoint of language engineering for informatioreas® Some specific
requirements are at the forefront for information accesdyais. Information
access involves matching brief or even incomplete exprassif information
need to relatively more verbose documents and items ofrimdition. The
documents are not necessarily formulated for ease of vatiire mind.

For this class of tasks, models that are based on dynamadzdirved data
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of language use in some form are dominant. They have comnaracteris-
tics, however those data are collected and whatever thadiearof the data:
they are based on occurences of linguistic units in a comtexse; they do
not rely on explicitly represented pre-compiled knowledyey are flexible
and sensitive to the domain and universe of discourse at hand

The Distributional Hypothesisthe basis for distributional language mod-
els, states that two words are similar to the extent that gheye contexts
Harris (1968), and thus that distributional data — of how dgappear in
contexts — can be used to model similarity, however it is ustded, be-
tween words. That statement can be used as a basis for a thfanlganing
suitable for practical deployment in contexts where apjnaxive semantic
analysis of large amounts of linguistic data is necessapraximating simi-
larity in use with similarity in meaning.

Change or semantic drifis modelled seamlessly by distributional mod-
els. New data will provide new occurrence data for the motiet problem
of modeling change can be formulated as the problem of segethte right
training context: what data are relevant to the model at fdhthe correct
situational context is provided for the model, the resgltiepresentation will
reflect the usage in them. This is a desirable quality in thdetso we know
human language changes fluidly. From one intellectual sbtdeanother and
from one discourse situation to another the usage and ppital referents
of expressions shift and change with little or no confusmrhiuman users; as
time passes, words’ meanings evolve and change with littteoaonfusion,
without any attention from their users.

Most distributional models are difficult to provide with pemputed data
— to “teach” — in a non-arbitrary manner. Again, this is a daisie quality.
We know people learn language their entire life. They dowhilout explicit
acts of definition and instructionn keeping with this it would be useful to
find that a system for processing large amounts of text frorping sources
have a semantic model capable of operation with little humgsrvention,
with the necessary knowledge extracted from the data at. lzisttibutional
models in practice are implemented not only to work withauygesvision but
in fact most often to forswear it entirely.

Most distributional models do not rely on external fixed khedge
sources to any great extent, and base their deliberatiostatistical or proba-
bilistic calculation on the data alone. We know people seltike recourse in
definitions or formal delimitations of meaning between typé expression.
Expressions can be more or less similar in meaning, changithgauthor
and reader perspective or situational context: a semaruaitehfor robust
processing of information from many authors to many readerst not be
brittle and dependent on exact expression of formal knogéed- it should
seamlessly incorporate the gradual shift in meaning framesto similar and
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from related to distinct (Karlgren, 1976, e.g.). Distriloutal models are typ-
ically implemented with calculation frameworks with imisic provision of
gradual shades dfomeosemgyr relative similarity.

As can be inferred from the sketchy description above, battd or term
on the one hand ancbntexton the other are central for modeling distribu-
tional data. The data may be preprocessed to identify gcaphiord occur-
rences, morphologically normalized words, multi-wordmer or whatever
linguistic unit is being considered. The nature of the censtudied varies
according to what sort of model is being built: an utterarcejindow of a
few surrounding word tokens, an entire text, or a topical.uni

24.2 Representing distributional data — understanding
language models

Distributional models collect data of term occurrencesSehdata are com-
piled in some representation for convenient further prsiogsProbabilistic
language model®.g., refine the occurrence data into an estimate of the prob
ability that a given word will appear again, given some obsdior observable
context.

The dominant language model for analysis of textual infdioman infor-
mation access and lexicographical applications isvértor space modeh
vector space is a many-dimensional space where the pointsecaccessed
by address — by a vector of coordinates using some systeimaliypcarte-
sian. A pointin a vector space can be described by a vedtuus:

U= [Ulv"'avn]

wheren is the dimensionality of the vector space.

The vector space model for languages posits such a manyadiomal
space for terms by populating a vector space with distidimati data of term
usage in text or discourse. The data are represented in &nfabf order
w X m, such that the rows), represent the terms, the columfis represent
the contexts under consideration — documents, e.g., in tst typical case
— and the cells are the (possibly weighted and normalizetjuiency of a
given term in a given context. Each row of frequency counts tonstitutes
ann-dimensional occurrence vectofor a given term. These occurrence vec-
tors, interpreted as coordinates in @imensional space as above, deliver
a vector space model with the occurrence vector defining atitoe for its
term.

Vector space models have gained increasing currency fdicappn to in-
formation access tasks. They exhibit several attractieditigs, not the least
being that of pleasing intuitive simplicity, transpareraiyd ease of expli-
cation. They are also computationally efficient in seveeapects, and have
proven useful in several applications.
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FIGURE1 Computation of cosine between two vectors

This model lends itself naturally to the application of stard distance
metrics. Position is determined by the occurrence of temeentexts; close-
ness in space implies distributional similarity or similesage; and proximity
between points — terms — in this space can easily be understosimi-
larity in meaning. This notion of proximity or distance cam tised to model
gradual shades of relative similarity.

Similarity can be established either by calculating théagise between the
points in space, or by transforming the vectors to polar dimates and using
the angle between them. This, in essence, normalizes @d/eemagnitude
of the cell values in the matrix — vectors with the same odgan are consid-
ered equal. Most often the cosine of the angle as per the farimérigure 1
is used: it interprets readily as a proximity measure.

In summary, vector space models localize terms at pointpanes Prox-
imity of a term to other terms is calculated through someadict measure.
The meaning of a term is found by inspection of its closestjimabrs —
meaning is considered to be located in a region around tdrens1s can shift
meaning, and this is modeled by moving the term to anothet fospace.

24.3 Space and meaning

As any model, the vector space model is intended to simgiériotion it is
modeling, better to aid processing or understanding theobibjotion; as any
metaphor the space and distance metaphor for meaning medigberience
from one area of human activity to another by conceptuabfeaence.

The space metaphor is powerful and pervasive in human tign&nd
seems to fitin neatly with intuitions about how meaning coatesut. Expres-
sions such as “close in meaning” abound. But what sort ofespacpeople
think about when they use spatial expressions to discuseintgga

While relative distance or proximity seem to be centralthi absolute
distance measures nor other spatial relations are norusdly. Each seman-
tic comparison we make can be made in terms of proximity — herotela-
tions are simple to make explicit. “Close in meaning.” oré€#r in meaning.”
are acceptable statementsStightly above in meaning.”,*More to the north
in meaning.” and *One metre removed in meaning.” are not. It seems that our
conception of meaning as space is limited to something likaiged view of
a one-dimensional space.
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24.4 Distributional models do not preserve all distributianal
information

While the distributional models base themselves on ocogagin data, they
generalize from those observations, thus ridding theresai¥overly specific
information. Probabilistic models sample the data andotistaestimates of
probable reoccurrence of observed items; vector space Imodmpile the
occurrence data into a point in vector space. In both cadesy@amount of
distributional information is discarded.

The vector space model is useful and attractive, but doesslimaitations.
Some of them have to do with our understanding of the spacaghet itself:
the notion of distance between points leads us to the wrolegleéions and
an incorrect view of what the space is. While the multi-disienal space
maybe the correct framework to solve structural problems ofépeesenta-
tion, our intuitions risk leading us astray.

The intuitive use of the expressions “conceptual distarare“close in
meaning” does not specify in what way that distance is catedl, nor what
topological status the locus of “concept” or “meaning” haveither does the
vector space model require a specific distance measure oitiefiof mean-
ing. Yet the influence of our intuitions from living in two diensions of a
three-dimensional world via grade school geometry to thetorespace cal-
culations have led us to a too constrained view of what carchieged using
the model. This constraint may be inherent in the model, touay also be
a constraint only of the metaphor and our representationeoiitodel. Deter-
mining whether the metaphor or the model is the limitingdads difficult or
impossible to do without proper calculation; our intuittoabout space and
meaning are not the right tools to make informed decisions.

The solar system metaphor of an atom is a parallel case ofrasepta-
tion and a model leading its users to wrong conclusions. Tier system
model is seductive in its simplicity and its imaginative Gies. A consider-
able amount of effort in higher physics classes is spemdriyo unlearn the
model — which has been useful for gaining the first glimpsesfast steps
of understanding of subatomic structure, but where eacioabwsuccessive
generalization is a step in the wrong direction.

24.5 Points, distances, and dimensions

Vector space models localize terms at points in space. Teamshift mean-
ing, which is evidenced by their occurrence data; these a&accommo-
dated in the model by moving the term to another point in spRetations
to other terms change accordingly, and are evidenced by reandes cal-
culated between them. This simple operation adheres wellitantuitions
of how points in space can be manipulated. When modeling sgpes of
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observable distinctions in meaning made in human discaursay well be
contested in view of its discarding a considerable amouittfofmation.

silicate

glass

w2 gin

d(glass, gin) = cos(w1) = d(glass, silicate) = cos(ws)
d(gin, silicate) =+ o(d(glass, silicate) + d(glass, gin))

FIGURE2 Polysemous terms have many kinds of neighbors in two diroassi

The study of vagueness, polysemy, generality, and othestgpdistribu-
tionally evident data would be well accommodated by broatgthe scope
of how terms are represented in the model and attendantmefbhow the
notion of semantic distance is represented.

Distance between two points in a euclidean space is synwakamd tran-
sitively calculable. This does not necessarily always havee the case in
a semantic space. Distance can be calculated in numeross Was/possi-
ble to examine the implementation of the space metaphoelgicand retool
that implementation better to transcend our first intusiafi what geome-
try is to e.g. allow for non-euclidean, non-symmetric, ricamsitive distance
measures.

Polysemous termare a case in point. Proximity between “glass”, the bev-
erage, and “gin” on the one hand and between “glass”, thetauts, and
“silicate” on the other need not imply proximity betwen “§iand “silicate”,
as illustrated in Figure 2. The risk of confusing transitpreximities can be
addressed within the standard term-as-points-framewsirigiadditional cal-
culation — by retaining more distributional data in the miogled allowing
the term to occupy a trace or a more complex structure tharird iposector
space.

Vague termsare another example. The capability of vector space models
to handle the distinction between vague and definite usagerislimited.
If a term in the data is used vaguely, the resulting represient will still
try to pull the data together into a point. The representatiba term in the
model does not in any way carry the information whether thm tehould
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be understood as definite or vague; the distance betwees temalculated
identically from a point in vector space whether they areueagr specific.

The model pulls together various items as exemplified in fE@u It can be

argued that the model simply reflects the data: lots of thémgsiice, and they
share a feature. The potential problem with the model isttieatague quality
of niceness is typically modeled as strongly as is the definitality of, say,

animacy or birdness.

In general, measurement of distance can in the given fariilgaior space
models only be calculated between terms — which is of littigy given that
the stated objective of most distributional models is toarsthnd the relation-
ship between concepts or whatever notional units of meammegpostulates.
A term without a well-defined meaning — arguably the majooityerms —
cannot be represented in any other way than as an (typicelighted) aver-
age of its occurrences. This distinction, if addressed astabuld be handled
on model level. The vector space model does not handle thtisclion.

It is not inherently necessary for the model to attempt td fogether the
representation of each term into a point. It is a relativalyme extension to
investigate terms represented by spaces rather than pmictsas clouds, hy-
perplanes, clusters or concentric structures — it wouldliressimply imply
retaining more data when refining the raw occurrence dataeprésenting
the additional data in the vector space. Higher-orderidigional character-
istics can be utilized to determine which geometry the itistion of a term
should be modeled by: patterns of distribution can be malejepatterns
in space rather than using averages, which throw out mosieoflistribu-
tional information. Such an extension, however, will by essity break the
standard metaphor and its distance measure: the distatveedmetwo clouds
is not well-defined from without the model itself, and neeulb¢ addressed
explicitly, not by inheritance via a metaphor.

24.6 More meaningful models?

In conclusion, distributional models in general, and veapace models
specifically, risk having their usefulness overshadowedobgrly simple

metaphors of use which constrain the amount of informatidraeted from

the raw occurrence data upon which they are built. To betteoramodate
some of the features of the model or to investigate extendedlation bases
of the model, higher-order data could be included — e.g. mesof the di-

rections indicated above. By ridding the vector space mfsdei the simple

distance metaphor it is delivered with it will lose one of st appealing
qualities — that of pandering to our intuitions — but prorsiszgain in expli-

catory power.
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meatball

eider

nice afternoon

valse triste

d(kiss, swan) = o(d(kiss, nice) + d(swan, nice))

FIGURE3 A vague term will be close to concrete terms
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