
1

High-dimensional distributed semantic spaces for
utterances

Jussi Karlgren1 and Pentti Kanerva2
1Gavagai and KTH Royal Institute of Technology, Stockholm, Sweden

2Redwood Center for Theoretical Neuroscience, UC Berkeley, CA, USA

THIS PAPER HAS BEEN PUBLISHED IN THE
JOURNAL OF NATURAL LANGUAGE

ENGINEERING

Karlgren, Jussi, and Pentti Kanerva. ”High-
dimensional distributed semantic spaces for
utterances.” Natural Language Engineering
25, no. 4 (2019): 503-517.

Abstract—High-dimensional distributed semantic spaces have
proven useful and effective for aggregating and processing visual,
auditory, and lexical information for many tasks related to
human-generated data.

Human language makes use of a large and varying number
of features, lexical and constructional items as well as contextual
and discourse-specific data of various types, which all interact to
represent various aspects of communicative information. Some
of these features are mostly local and useful for the organisation
of e.g. argument structure of a predication; others are persistent
over the course of a discourse and necessary for achieving a
reasonable level of understanding of the content.

This paper describes a model for high-dimensional represen-
tation for utterance and text level data including features such
as constructions or contextual data, based on a mathematically
principled and behaviourally plausible approach to representing
linguistic information. The implementation of the representation
is a straightforward extension of Random Indexing models
previously used for lexical linguistic items. The paper shows
how the implemented model is able to represent a broad range
of linguistic features in a common integral framework of fixed
dimensionality, which is computationally habitable, and which
is suitable as a bridge between symbolic representations such
as dependency analysis and continuous representations used e.g.
in classifiers or further machine-learning approaches. This is
achieved with operations on vectors that constitute a powerful
computational algebra, accompanied with an associative memory
for the vectors.

The paper provides a technical overview of the framework
and a worked through implemented example of how it can be
applied to various types of linguistic features.

I. HUMAN LANGUAGE

Human language is a general-purpose representation of
human knowledge, and models to process it vary as to the
degree they are bound to some task or some specific usage. The
current trend in computational language representations is to
train a model to represent regularities and patterns with as little
explicit knowledge-based linguistic processing as possible, and

recent advances in such general models for end-to-end learning
to address linguistics tasks have been quite successful. Most
of those approaches make little use of information beyond
the occurrence or co-occurrence of words in the linguistic
signal and take the single word to be the atomic unit. The
framework proposed by us in this paper shows how high-
dimensional models similar to the ones currently used as a
standard processing model for word-level similarities can be
extended to accommodate linguistic items and feature beyond
lexical items, in a transparent and handy representation similar
to what is currently the standard processing model for word-
level information. We expect that this model can be used
as a front end for further processing by machine learning
approaches that expected their input to be in continuous form.

A. Requirements for a representation

There are some basic qualities we want a representation
to hold to. A representation should have descriptive and
explanatory power, be practical and convenient for further
application, be reasonably true to human performance, provide
defaults to smooth over situations where a language processing
component lacks knowledge or data, and provide constraints
where the decision space is too broad.

Neurophysiological plausibility We want the model to be
non-compiling, i.e. not need a separate step to accommodate a
new batch of data and be available on-line during training. We
want the model to exhibit bounded growth, meaning it should
not to grow too rapidly with new data.

Behavioural adequacy We want the model to be incremen-
tal, i.e. to improve its performance (however we choose to
measure and evaluate performance) progressively with incom-
ing data. While we want our model to rely on the surface form
of the input, we do not acknowledge the necessity to limit the
input analysis to be white-space based tokenisation: a more
sophisticated model based on the identification of patterns
or constructions in the input is as plausible as a naive one.
We want our representation to allow for explicit inclusion of
analysis results beyond the word-by-word sequences typically
used as input to today’s models.

Computational habitability We want the model to be evalu-
able and transparent, and manageable computationally in face
of large and growing amounts of input data it is exposed to.
We do not want it to make assumptions of a finite inventory
of lexical items or expressions. We want the model to accom-
modate potential features of interest during experimentation



2

without requiring expensive reconfiguration of the processing
scheme.

Explicit representation of features We want the model to
allow exploration by explicit inclusion of linguistic features
of potential interest—This means that we want the model to
accept input preprocessed to include more advanced feature
sets than mere word tokens.

Context and Anchoring We want the model allow the inclu-
sion of extra-linguistic data and annotations. Linguistic data is
now available in new configurations, collected from situations
which allow the explicit capture of location, time, participants,
and other sensory data such as biometric data, meteorological
data, and social context of the author or speaker. These data
are potentially of great interest e.g. to resolve ambiguities or to
understand anaphor and deictic reference and we see no reason
for them to be represented separately from the linguistic signal.

II. LINGUISTIC THEORY

The model we propose is built on two foundational theo-
retical approaches in linguistics. Common to most learning
models our model builds on distributional semantics. Such
models are typically built to track individual words and occa-
sionally multi-word terms. We extend the model by viewing
the linguistic signal from a radical construction grammar
perspective, adding constructional items to the feature set to
be observed. This allows us to model the information in an
utterance with more detail than the constituent terms in it.

However, it remains to be established what the proper
purpose of an utterance representation would be. Lexical
semantics can well be argued to be determined both by
how a lexical item combines in a sequence with other items
and what other items could be used validly in its place.
For utterances, typical representations concern what linguistic
items it is composed of and how they are combined, without
paying much attention to how those combinations constrain the
external context of the utterance. We would expect that a future
framework for full representation of an utterance allows the
representation of such contextual information in some form,
whether it be discourse level models or even extra-linguistic
information.

A. Distributional semantics

Distributional semantics is based on well-established philo-
sophical and linguistic principles, most clearly formulated by
Zellig Harris (1968). Distributional semantic models aggregate
observations of items in linguistic data and infer semantic sim-
ilarity between linguistic items based on the similarity of their
observed distributions. The idea is that if linguistic items—
such as the words herring and cheese—tend to occur in the
same contexts—say, in the vicinity of the word smörgåsbord—
then we can assume that they have related meanings. This
is known as the distributional hypothesis (Sahlgren 2008).
Distributional methods have gained tremendous interest in the
past decades, due to the proliferation of large text streams and
new data-oriented learning computational paradigms which are
able to process large amounts of data. So far distributional
methods have mostly been used for lexical tasks, and include

fairly little of more sophisticated processing as input. This is,
to a great extent, a consequence of the simple and attractively
transparent representations used. This paper proposes a model
to accommodate both simple and more complex linguistic
items within the same representational framework.

Common to all distributional approaches is that they collect
observations and generalise from them, whether they end up
formulating their results as a probabilistic or a geometric
model. The parameters of those approaches are manifold
and impinge on the results in various ways. Levy, Goldberg,
and Dagan (2015) show how those parameters are largely
translatable between processing models and that the exact
choice of processing model is in most respects less important
than the choice of what information to process. Our claim here
is that is desirable that the processing model and representation
chosen adhere to the principles given above.

B. Construction grammar

The Construction grammar framework in its most radical
formulations is characterised by the central claim that lexical
items—the words—and their configurations—the syntax—
are processed similarly or even identically. In construction
grammar, lexical and syntactic observations are both viewed
as linguistic items with equal salience and presence in the
linguistic signal. This notion, that lexicon and syntax should
be processed similarly, is referred to as the syntax-lexicon
continuum. This is to be understood in contrast with most
linguistic theories that divide the structural analysis of syntax
and lexicon into separate representations and processing mod-
els (Croft 2005). The parsimonious character of construction
grammar is attractive as a framework for integrating a dynamic
and learning view of language use with formal expression of
language structure: it allows the representation of words to-
gether with constructions in a common framework, and makes
no claims to what elements of constructions are obligatory,
universal, or foundational.

For our purposes construction grammar provides an elegant
theoretical foundation for a consolidated representation of both
individual items in utterances and their configuration.

III. HIGH-DIMENSIONAL REPRESENTATION

A. General properties

Vectors with thousands of dimensions have properties ap-
propriate for modeling cognitive processes. For example, if
one fourth of the components have changed or are corrupted
by noise, the altered vector can still be identified with the
original—it is more similar to the original than a randomly
chosen vector would be. This corresponds to our ability to
recognize faces and voices, identify animals and plants and so
forth with apparent ease, although the information available
to the brain never repeats exactly. But the apparent ease is
deceptive. Trying to build such traits into artificial systems
has proven to be very difficult.

This is true also of language. Although words are discrete
units, they often have a range of meanings or several disjoint
meanings. Properties of high-dimensional vectors are useful
here as well. If we represent meaning by a high-dimensional



3

vector, called a semantic vector, the vector for train can at once
be similar to vectors for bus and teach (and for coach!) and
dissimilar to nearly every other semantic vector. The apparent
ease with which our brains deal with ambiguity in language
is very likely due to high-dimensional representation.

A model built from semantic vectors is a vector space
which allows geometrical computational approaches to access
the information collected into the space. Vector space models
are frequently used in practical information access, both for
research experiments and as a building block for systems in
practical use at least since the early 1970’s (Salton, Wong, and
Yang 1975, Dubin 2004).

Vector space models have attractive qualities: processing
vector spaces is a manageable implementational framework,
they are mathematically well-defined and understood, and they
are intuitively appealing, conforming to everyday metaphors
such as “near in meaning” (Schütze 1993).

Semantic vectors have attractive qualities for implemen-
tations of distributional semantic theories. The content of a
semantic vector can be accrued from observing contexts in
which the word has been observed. If those contexts also
are represented in some vector form, the aggregation of
observations into a semantic context vector is straightforward.
The selection of the most appropriate context defines what
semantic relations are represented in the model (Sahlgren
2006).

The vector space model for meaning is the basis for most
all information retrieval experimentation and implementation,
most machine learning experiments, and is now the standard
approach in most categorisation schemes, topic models, deep
learning models, and other similar approaches, including this
present model.

Common to semantic vector spaces is that the dimension-
ality of a vector space grows rapidly with N , the number
of items (words, in practice) and C, the number of contexts
observed. Most implemented models rely on some form of di-
mensionality reduction, which allows the large and sparse raw
observations to be reduced into a denser and more manageable
form. Latent Semantic Analysis or Indexing (LSA or LSI,
respectively) is among the earliest and better known methods
(Deerwester, Dumais, Furnas, Landauer, and Harshman 1990,
Landauer and Dumais 1997). Latent Semantic Indexing in its
original implementation makes note of what documents a word
has occurred in and reduces the observations of words by
contexts using singular-value decomposition to build several-
hundred-dimensional semantic vectors for words. Semantic
vectors for phrases, sentences, paragraphs, news articles, and
so forth are then computed by summing over vectors for the
words. Recent distributional models such as the neurally in-
spired deep learning models avoid the explicit dimensionality
reduction step by training a transition matrix that transforms
a sparse incoming vector of dimensionality N into some
manageable internal processing dimensionality, typically of
o(100). Training this matrix typically is a major computational
effort.

The method of random projections is an efficient alternative
to dimensionality reduction steps that takes advantage of
high dimensionality (Papadimitriou, Raghavan, Tamaki, and

Vempala 2000). Random Indexing is a simple implementation
of random projections for building semantic vectors, and
provides us with an apt introduction to computing with high-
dimensional vectors (Kanerva, Kristoferson, and Holst 2000,
Sahlgren, Holst, and Kanerva 2008).

In previous experiments for learning lexical similarity be-
tween words, we have used random indexing with 2,000-
dimensional vectors. Each word in the vocabulary is repre-
sented by two such vectors, one constant and the other variable.
The constant vector is called the word’s index vector or label
and is assigned to the word at random when the word is first
encountered. Sparse ternary labels have worked well: a small
number of +1s and the same number of −1s (e.g., 10 each)
randomly placed among 1,980 zeros. The variable vector is
the word’s semantic vector. It starts out as the zero-vector and
is updated every time the word occurs in the corpus.

The text is read by focusing on one word at a time, and
a few words before and after the focus word are its context
window. The semantic vector for the focus word is then
updated by the random labels of the context words. If the text
under consideration is as in Example (1) at the point when
the reading has progressed to the word over the semantic
vector for over will be updated by adding to it the random
labels for its context (marked by brackets in the example)
brown, fox, jumped, the, lazy and dog’s. Thus, a word’s
semantic vector will be the sum of the random labels of its
observed neighbours. In this example the context from which
the semantic vector is learned is a symmetric window 3 +
3 words wide. How that context is chosen and encoded—
what its range is, whether words should be weighted according
to distance from the focus word or their global occurrence
statistics, whether some words should be excluded from the
calculation entirely, whether left-hand neighbours should be
recorded separately from right-hand neighbours—has great
effects on the resulting semantic model (Levy et al. 2015).

(1) a. The quick [brown fox jumped] over [the lazy
dog’s] back.

A major issue with early experiments with semantic vectors
for utterance-level analysis was the absence of linguistic
structure in the analysis. Proximity of words in the corpus was
all that was taken to matter, and so first examples of vectors for
utterances represented the topic being discussed but leave out
the story being told—whether it was the boy who hit the ball or
the ball that hit the boy. Later models introduce representations
to allow parts of speech and constituent structure to be encoded
into the vectors (Baroni and Zamparelli 2010, Wu and Schuler
2011), and in have found that relatively simple manipulation
of vectors through addition and multiplication can yield useful
representation of some phrasal structures (Mitchell and Lapata
2008; 2010). The at time of writing most broadly established
neurally inspired model, word2vec, retains some structural
information in its semantic space and this can be used to infer
some phrasal structure (Mikolov, Sutskever, Chen, Corrado,
and Dean 2013). Several efforts to include more information
from linguistic analyses have been done (Padó and Lapata
2007, Baroni and Lenci 2010, e.g.) but these efforts have



4

typically foundered on sparsity of data and impracticality of
the linguistic preprocessing in face of non-standard text. Most
recent efforts have discounted the necessity of working with
parsing or other intra-sentential structural information, trusting
in the ability of end-to-end models which are taught to tailor
the analysis to some task to generalise. While the performance
on current tasks for such models is impressive, we expect
further tasks to again motivate the use and introduction of
structural information in utterance representations. There are
many potential approaches to take, and while most are based
on dependency formalisms (Weeds, Weir, and Reffin 2014,
e.g.), we also find with some interest that some linguistic
structures in compositional models of distributional seman-
tics have been formulated in terms of categorial grammar
(Clark, Rimell, Polajnar, and Maillard 2016). The inclusion
of such information, whether through phrase structure models
or dependency models will by necessity entail more complex
representations and current work attempts to manage this
through e.g. tensor models which allow a confluence of
information to be represented simultaneously. These models
come at a considerable computational and conceptual cost
(Polajnar, Fagarasan, and Clark 2014, Sandin, Emruli, and
Sahlgren 2017, e.g.). The approach we present here allows
for explict experimentation, e.g. by including dependency
information along with lexical items, allowing for concurrent
application of many information sources in one representation,
but does so in a computationally and conceptually habitable
manner, obviating the need for tensor models.

B. Hyperdimensional computing

In this paper we describe simple operations on high-
dimensional vectors that allow both bag-of-words semantics
and constituent structure to be expressed in the same vector.
We make use of the framework first introduced by Plate under
the name Holographic Reduced Representation (HRR; Plate
1991; 2003). Its variants go by different names: MAP (for
Multiply–Add–Permute; Gayler 1998), Vector Symbolic Ar-
chitecture (VSA; Gayler 2004), and Hyperdimensional Com-
puting (Kanerva 2009). These systems encode information
with three operations that keep vector dimensionality constant,
thereby allowing composition of structure to any depth. Two of
the operations correspond to addition and multiplication, and
the third permutes or shuffles vector coordinates, as detailed
below in Section III-C. A key property to the operations is that
they allow fully general computing based on a well-understood
computational algebra. The details of addition and multiplica-
tion depend on the kinds of vectors used, whether binary, bipo-
lar, ternary, integer, real or complex. This framework—a vector
space together with linear algebraic manipulation operations
and geometric access and analysis operations—can be used
for the purposes of a richer linguistic representation which
allows us to represent utterances, including elements of their
structure, in a common vector representation. The training
model used by word2vec and related neural approaches has
previously been combined with random indexing and linear
algebraic operations to encode certain syntactic relations in
texts from the biomedical domain to establish similarities

between concepts (Widdows and Cohen 2014, Cohen and
Widdows 2017). The framework presented here is quite closely
related to that work, but aims to generalise it to a larger
potential inventory of features.

For the purposes of the following discussion, we will make
use of n-dimensional vectors populated with both positive
and negative real values, with n > 1, 000. Computing with
high-dimensional vectors begins by assigning randomly gen-
erated index vectors or labels to basic observed items, with
independent, identically distributed components. In a study of
orthography, letters would be basic objects, and in a study
of lexical semantics, words or multi-word terms would be. In
this present model, constructional linguistic units are included
as basic objects along with lexical items by assigning them
labels along with everything else of interest. Starting with
the index vectors we compute vectors for composed entities
using the three operations given above. For example, if v̄m, v̄a
and v̄p are vectors for the letters m, a and p, the sum vector
v̄map = v̄m + v̄a + v̄p is a bag-of-letters representation of the
word map: it is similar to each of the vectors v̄m, v̄a and v̄p,
and it the same as the vectors for amp and pam. However, if we
want to have a vector that is unique to map and dissimilar to all
other word vectors, we can make use of permutation operations
or multiplication operations to distinguish the positions of the
vectors v̄m, v̄a and v̄p in the sequence. Sequential structure
can be encoded in various ways and we will return to this
issue in the implemented example in the next section.

Similarity (∼) of vectors is calculated based on the angle
between them or the distance between them on the unit sphere.
Scalar or dot product can be used as such or normalized as co-
sine or Pearson correlation. Cosine = 1 means most similar and
cosine = 0 means dissimilar, unrelated, orthogonal. Through
the geometric properties of high-dimensional spaces, any given
vector will be quite dissimilar to any other randomly picked
vector unless some of the information in them has caused them
to converge. What cosine values are interesting or notable
must be calibrated for each implementation, depending on
amounts of data, dimensionality, and density of representation;
in general, a cosine or correlation of about 0.25 or better
between two vectors will mean that they are notably similar.

C. Mathematical specifics

The following is an overview of the most important proper-
ties of the operations, with examples of their use in encoding
and decoding information.

An addition of vectors, resulting in a sum vector is similar
to its operand vectors (A+B ∼ A) and independent of their
order (A+ B = B + A); it can be used to represent a set or
a multiset (“bag” is another name for multiset, hence “bag-
of-words”). The similarity between the sum and its operands
decreases with the number of vectors in the sum. Two sum
vectors are similar if most of their operands are the same,
e.g.,

A+B + . . .+ T + U + V

∼ A+B + . . .+ T +X + Y + Z

This is the idea behind semantic vectors as bags of words.



5

Multiplication is done coordinate by coordinate, known as
the Hadamard product. Multiplication is invertible and the
product vector is dissimilar to its operands (A ∗ B 6∼ A). In
particular, a bipolar vector—a vector populated with 1s and
−1s multiplied by itself is a vector of 1s, meaning that the
vector is its own inverse. Multiplication can be used for vari-
able binding for any variable of interest. For our purposes here,
this could be grammatical features related to e.g. agreement
resolution, such as number or tense, or situational data such as
time of day, number of speaker, or any other item of interest
under study. Inverse multiplication can then be used to release
the value bound to a variable. For example, if we assign a
vector X to represent a variable x and another variable A for
a value a which that variable can take, we can use X ∗ A to
represent the fact that variable x has value a. We can then, if
X has been defined to be a bipolar vector, recover the value
by multiplying that product again with X:

X ∗ (X ∗A) = (X ∗X) ∗A = 1 ∗A = A

Multiplication distributes over addition: X ∗ (A + B) =
(X∗A)+(X∗B). This makes it possible to add several bound
variables into a single vector and to recover bound values. For
example, we can encode the values of three variables {x =
a, y = b, z = c} using bipolar vectors X , Y , and Z added
into a vector (X ∗A) + (Y ∗B) + (Z ∗ C) and then find the
value that is bound to X by multiplying with X as above:

X ∗ ((X ∗A) + (Y ∗B) + (Z ∗ C)) = X ∗ (X ∗A) +X ∗ (Y ∗B) +X ∗ (Z ∗ C))

= A + noise + noise

∼ A

The answer is approximate but close enough to the exact vector
to be identified with it with very high probability. However,
as the number of bound pairs in the sum vector increases, the
ability to recover values of bound variables decreases (Frady,
Kleyko, and Sommer 2018).

Multiplication preserves similarity. If two vectors are mul-
tiplied by the same third vector, the resulting vectors are just
as similar to each other as the originals:

sim(X ∗A,X ∗B) = sim(A,B)

This suggests a mechanism for computing with analogy.
Permutation takes a single operand, rearranges its co-

ordinates, and produces a vector that is dissimilar to the
operand (Π(A) 6∼ A). Permutations resemble multiplication
in several ways: they are invertible, preserve similarity, and
distribute over addition. They distribute also over multiplica-
tion (Π(A ∗ B) = Π(A) ∗ Π(B)), making them extremely
useful for encoding and decoding compositional structure.
However, permutations are matrices rather than vectors and
so they are not elements of the space of representations.
In mathematical terms, they are unary operations on vectors
whereas multiplication is a binary operation. In practice this
means that a vector used for multiplication can be learned
within the system, whereas permutations must be predefined.
They can, however, be operated on by other permutations. The
number of possible permutations is enormous.

Examples of (multi)sets, sequences, and variable binding
were shown above.

Here we present one more, the encoding of nested struc-
tures. If we encode the pair (a, b) with two unrelated permu-
tations Πcar and Πcdr as Πcar(A) + Πcdr(B) then the nested
structure ((a, b), (c, d)) can be represented by

Πcar(Πcar(A) + Π2(B)) + Π2(Πcar(C) + Πcdr(D))

= Πcarcar(A) + Πcarcdr(B) + Πcdrcar(C) + Πcdrcdr(C)
(2)

where Πij is the permutation ΠiΠj .
The ability to decode distributed representation and to

recover its constituents is essential to computing with high-
dimensional vectors. There is of course a limit to the amount
of information that can be represented in a single vector,
and it depends on dimensionality and on the value range
of individual components. Generally speaking, the ability to
resolve a sum vector into its constituent vectors grows linearly
with dimensionality, and the ability to determine whether a
given vector is included in a sum vector grows exponentially
with dimensionality (Gallant and Okaywe 2013, Frady et al.
2018).

The above overview introduces the operations used in the
rest of the paper. There are deeper reasons for having discussed
them in as much detail as we have done here. Making semantic
vectors with random indexing mimics how we learn language
and assign meaning to words. The random index vectors are
like words: they are distinct and constant and get their meaning
from their use with other words. The fact that the words of a
language are rather arbitrary agrees with the notion that they
are in essence random, yet can serve as the material on which
meaning relations—the semantic vectors—are built.

There is a further reason for discussing the mathematics in
detail. To come to terms with the complexity and fluidity of
language, we need a rich and powerful system of representa-
tion, the workings of which can also be understood. That is
the reason for drawing attention to (quasi)orthogonality among
high-dimensional vectors and invertibility and distributivity of
operations on them. Computing in distributed representation
with high-dimensional random vectors based on their algebra
is a candidate for such a system. Our task is to find out how
it maps to various aspects of language.

IV. AN IMPLEMENTED EXAMPLE

The aim of our framework is to be able to represent an
utterance—a clause or a sentence or some similar chunk of
language. Previously, high-dimensional models have been used
for the representation of lexical similarity, and while some
of those results carry over to utterance models there are
specifics to attend to when extending the model to utterances.
The objective is to generate for each utterance a vector
which represents the distinctive features of that utterance.
Those features will include what lexical items the utterance
is composed of which is something an additive combination
of referential expressions will handle with some ease, but
we wish to be able to include both observable constructional
items as well as semantic roles that the entities mentioned in



6

the utterance participate in. In this implemented version we
do not make use of the full potential expressiveness of the
high-dimensional representation, nor of the potential feature
space human language and its usage allows. There are many
potential features which may be of interest, both linguistic (e.g.
stylistic analyses) and extra-linguistic (e.g discourse partici-
pants, location, time of day) and introducing the possibility to
operate experimentally with such features is one of the major
design motivators of this present framework. Processing the
linguistic signal and whatever extra-linguistic information is
available to identify such features may be variously difficult,
but the framework described here makes their inclusion in
further processing straightforward: each feature of interest can
be afforded its separate randomly generated label and included
in the utterance vector through addition, multiplication, or
permutation. The amount of information that fits into a high-
dimensional vector is quite large and adding further features
will add somewhat to noise, but not dramatically decrease the
resolution of information already recorded in the vector. One
of the fortes of this type of representation is that adding more
information to a vector does not change its dimensionality
which means that the processing pipeline need not be reconfig-
ured if a new feature is added to the data under consideration.

A. Data set

We have recently used this type of representation for the
study of author characteristics, question categorisation (Karl-
gren and Kanerva 2018), and language identification (Joshi,
Halseth, and Kanerva 2016). To demonstrate some of the
versatility of this approach, we process a set of about 1 million
microblog posts from Twitter and show how some various
features can be encoded in vector form.1 Some utterances from
the data set are given in Example (3).

(3) a. Getting as far away from this hurricane as possi-
ble.

b. afraid
c. I am afraid of the hurricane
d. I said I am afraid of the hurricane

B. Vocabulary

Each lexical item observed in the material is assigned an in-
dividual random vector as an index key. These are aggregated
for each utterance by addition. Some terms contribute more
to the distinctiveness of an utterance than others, and this can
here, as in other similar quantitative models be accomplished
through judicious weighting of terms, e.g. using TF-IDF or
PPMI scoring. If the collection under consideration is static
there are several well-established candidate approaches of
understanding the relative informational and discriminative
power of individual terms; if the data are streaming an online

1The posts were collected during the Fall of 2017, during which time period
hurricanes Irma and Harvey caused damage and distress for much of the
Caribbean and Southwestern United States. These posts were collected as
part of a separate project on citizen observatories and public sentiment with
respect to natural events, specifically flooding, and will be used in that project
to investigate how attitude in writing co-varies with tense, mood, and aspect
over an event timeline.

weighting scheme which can accommodate to changing statis-
tics is more useful. In this example we will use a streaming
weighting scheme shown in Equation 4 developed for a large-
scale lexical learning model (Sahlgren, Gyllensten, Espinoza,
Hamfors, Karlgren, Olsson, Persson, Viswanathan, and Holst
2016).

w(l) = e−λ·
f(l)
V (4)

In Equation 4, w(l) is the weight of a linguistic item l, λ is
an integer that controls the aggressiveness of the frequency
weight, f(l) is the observed frequency of the item, and V is
the current size of the growing vocabulary or feature palette
observed so far. This weighting formula returns a weight that
ranges between close to 0 for very frequent terms, and close
to 1 for less frequent terms. These are then used when adding
lexical entries from an utterance to form a sum of vectors for
the lexical content.

~Ulex =
∑

l∈utterance

w(l)× v̄l (5)

As an example, the vector for the sentence in Example (3-a)
will be a weighted sum of the nine constituent words’ vectors;
presumably, the words “as”, “this”, and “from” will have a
rather low weight; other words higher.

This implementation takes the simplest possible approach
to lexical features, with no morphological normalisation and
without training specific context vectors or using pre-trained
models: at this point in the procedure, instead of using ran-
domly generated index keys, previously trained context vectors
from other lexical resources could be used in their place. This
would provide a generalisation from representing tokens to
representing concepts, if the context vectors in question were
trained appropriately.

Table IV-B shows which items are found to be closest
neighbours to the probe sentences given in Example (3) by
lexical items alone.

Sample cosine utterance
(3-a) 0.15 I’m far away from the hurricane.
(3-b) 0.16 Lenny Bruce is not afraid.
(3-c) 0.19 i will always be afraid of hurricanes
(3-d) 0.18 like i said, i’m chillin through this hurricane.

Fig. 1. Closest neighbours to probe sentences in Example (3) by lexical
measures

C. Constructional Items

The primary approach to include constructional linguistic
items in the representation of utterances is to assign index
vectors to them and then process those constructional items
exactly as if they were lexical items.

Some constructional items are observable without much
specific analysis: an utterance can be negated, can be in past
tense, can be qualified by some coherent or interesting set of
adverbials. Some items involve non-trivial processing; others
are closely bound to some set of lexical items. Any such
observable item can be assigned a random index vector similar



7

to those assigned to individual lexical items. In this imple-
mentation Example (3-c), e.g. is assigned features “present
tense”, “first person singular pronoun subject”, “expression of
fear and worry”. Such features are easy to add and evaluate
(naturally subject to the requirement they be observable with
any accuracy). Some of the features added such as “main
verb appears late in clause” proved to have little utility for
the analysis; others had better explanatory and discriminatory
power. How constructional features should be weighted needs
more thought: in our present implementation they have not
been frequency weighted and are added in using Equation 5
with the weights w(l) set to 1 by default.

D. Semantic roles

Semantic roles are relations between the state or process and
utterance refers to and entities referred to in the utterance.
We encode a lexical item in a role by taking the index
vector of the lexical item and permuting it by a permutation
specific to its role, randomly generated. The utterance vector
will then accommodate the lexical items as they occur, as a
mention, and then again, permuted by semantic role. In our
current implemented example we use dependency graphs from
the Stanford CoreNLP (Manning, Surdeanu, Bauer, Finkel,
Bethard, and McClosky 2014) to pick out the main verb
from the main clause, the subject of that verb (if present
and identified), and clausal and verbal adverbials. They are
encoded by taking the index vector v̄r of the head word r of
the constituent in question and permuting it by a role-specific
permutation Πs for role s. These are added to the lexical vector
Ūlex given by Equation 5 above as shown in Equation 6, to
yield a resulting vector Ūroles.

Ūroles = Ūlex +
∑

r with role s

Πs(v̄r) (6)

The vectors v̄r are by default the same lexical vectors which
were used for lexical models in Equation 5. Since they are
permuted by Πs they will be practically orthogonal to the
lexical vector.

E. Sequential structure

The sequential structure of a sentence can be represented as
a sequence of generalised labels for each token: most models
of syntax can be translated into a label sequence, especially if
bracketing labels are allowed. In this implementated example,
in place of full dependency trees, we use triples of part of
speech labels: more elaborate syntactic representations can
be included similarly. Obviously, triples are a poor model
of general syntactic structure: if this example is used as
a model, the length of the subsequence and nesting levels
should be determined by an informed assessment of what a
typical constituent length in the syntactic model is and what
generalisation one believes are valid to make from the data
at hand. We take each utterance and label its words using the
Natural Language Toolkit part of speech labeling with labels
conforming to the Penn Treebank label set (Bird, Klein, and
Loper 2009). From the resulting sequence of lexical category
labels all subsequences of length three are extracted. Example

Sample cosine utterance
(3-a) 0.54 meanwhile, 500 miles away from the hurricane in West Texas.
(3-b) 0.67 Lenny Bruce is not afraid.
(3-c) 0.58 i will always be afraid of hurricanes
(3-d) 0.55 I said it before and I’ll say it again... people died in this hurricane.

Fig. 2. Closest neighbours to probe sentences in Example (3) using lexical,
constructional, sequence tags, and semantic roles

(7) shows how a sentence is converted to a set of overlapping
triples.

A sequence of labels such as these triples can be rep-
resented in various ways. One way might be to assign an
index vector for each symbol in the label palette and then
to introduce a permutation for sequential relationships. Re-
calling the example map from Section III-A above, we might
want to represent it as a sequence distinct from amp and
pam. One way to do so would be to define a permutation
Πprecede to represent the relative position of items, and then
represent map through repeated application of Πprecede to the
character vectors v̄m, v̄a and v̄p and multiply the resulting
vectors instead of addition: instead of the bag-of-letters sum
vector v̄map = v̄m + v̄a + v̄p we would have v̄map =
Πprecede(Πprecede(v̄m)) ∗Πprecede(v̄a) ∗ v̄p.

(7) a. Anyone have a travel rest pillow I could borrow
for a long trip?

b. NN, VBP, DT , NN, NN, NN, PRP, MD, VB,
IN, DT, JJ, NN, “.”

c. [[NN, VBP, DT] , [VBP, DT, NN], . . . ]

As an alternative, in this implemented example we assign
each symbol in the palette a permutation instead of a vector:
{ΠNN ,ΠV BP , ...}, and encode the entire sequence through
permuting a specific vector, v̄labelsequence, generated to be
a place holder for label sequencing and identical for all
represented utterances. Each triple is then represented by
taking the constant vector v̄labelsequence and passing it through
the label permutations for the labels of the sequence. All
these resulting subsequence vectors are then added into the
representation for the utterance. Equation 8 shows how this
procedure encodes a sequence [VBP, DT, NN].

Πnn(Πdt(Πvbp(v̄labelsequence))) (8)

In this way every sentence in the experimental set has the
set of category label triples encodings added to its vector as
shown in Equation 9.

Ūsum = Ūroles+
∑

labeltriples

Πlabel1(Πlabel2(Πlabel3(v̄labelsequence)))

(9)
Notable here is that Example (3-b)—the one-word utterance

“afraid”—does not benefit from added sophisticated process-
ing, for obvious reasons. The more complex Example (3-c)—
“I am afraid of the hurricane”—increases its similarity to
its lexically closest neighbour. Example (3-d)—“I said I am
afraid of the hurricane”—finds other utterances where the



8

author utters opinions about hurricanes. In this way more
complex utterances will find other utterances with similar
characteristics.

V. RANDOMNESS AND NOISE

A high-dimensional space where observed items are rep-
resented by patterns, rather than by one assigned dimension
for each observation—a “localist” model—allows for a much
larger feature space to be embedded in a given dimensionality
d. For the purposes given in this paper, the number of potential
features—the size of the lexicon and the combined size of
all potentially interesting constructions—does not occasion
more than linear growth for the system in its entirety. In
our implemented example, a 2,000-dimensional space will
allow the representation of an entire vocabulary, constructional
items, sequence labels, and semantic roles, potentially includ-
ing cooccurrence statistics. The choice of d determines the
capacity of the space. As can be expected, a larger dimen-
sionality allows greater capacity: a 100-dimensional space can
store less information, i.e. fewer distinct features, for each
state than a 2,000-dimensional does. If we wish to aggregate
N (near)-orthogonal features by addition into a state vector,
their relative cosine distance to that resulting state vector
will be

√
(1/N). The expected size of N determines how

large d must be chosen to be to ensure that the cosine is
at a safe margin from the noise threshold occasioned by the
randomisation procedure. If a state vector is expected to hold
on the order of 100 unweighted feature vectors, the a resulting
relative cosine between each feature vector and the aggregated
state vector will be 0.1 on average. In a 1,000-dimensional
space, this is about three to four times the noise threshold;
in a 2,000-dimensional space about five to six times from the
noise threshold.

In Figure 3, illustrates for four different values of d how a
state vector with 20 aggregated random features can retrieve
the component features (red bars) compared to random vectors
(blue bars). With increasing d, the risk of random noise
decreases and the accuracy in finding an encoded feature from
a state vector increases to near certainty.

VI. CHARACTERISTICS OF HIGH-DIMENSIONAL SPACES

Very high-dimensional spaces lead human intuitions astray.
Navigating in many dimensions is very different from the 2-
D and 3-D intuitions we as humans use to understand spatial
relationships. We are used to the idea that if A is close to B
and B is close to C, then A cannot be very far from C. This
intuition fails us totally in a space of thousands of dimensions
if we think in terms of the “territory” (number of points) within
a given distance from point A. Doubling the distance in two-
dimensional space quadruples the territory, whereas in high-
dimensional space it can increase billion-fold. For example
with 2,000-bit vectors a mere billionth of them are within 865
bits of any vector A, but nearly all are within 1,135 bits.

This is true of high-dimensional spaces in general, not just
binary ones, and it agrees also with the nature of semantic
spaces: the words man and lake are far apart, entirely different
in meaning, but man is close to fisherman which is close to

fish which is close to lake, and man is close to plumber which
is close to water which is close to lake. This can be understood
through interpreting the notion of territory above as governing
semantic horizon. Any two linguistic items of notable nearness
to each other are related. If their distance is beyond some
horizon they are not related. In a high-dimensional space, even
a slight divergence from orthogonality, say a cosine of 0.25,
is notable. This means that two vectors with a relative angle
of 80◦ or so are interestingly related, but does not in any way
entail that this relatedness should be transitive.

This has important consequences for the understanding
of how feature sets can be aggregated and used in high-
dimensional spaces. The sum vectors ~U used in the previous
section show that a representation for an utterance encodes
every constituent feature in a compact and habitable way.
The sum vector retains all the features it has aggregated.
The above utterances in Example (3) show how they can be
used to retrieve other utterances with similar combinations
of features. This allows e.g. the search for utterances in a
collection by constructing probe utterances which combine
features of interest, or by direct query using feature vectors
directly. This does not inherently make any claims of how the
various features should be kept separate or weighted—this is
something that further processing models and classifiers can
address given the general representation.

However, a centroid should not be understood as a general-
isation of the features. Adding together e.g. all colour words
into a centroid, all names of months into a centroid, or a set
of expletives and lewd terms into a centroid does not yield a
representation of colourfulness, of months, or of profanity: a
vector sum does not in itself provide a generalisation of the
component features, but a representation of their combination.
This should be kept in mind when similarities are computed.

VII. SUGGESTED WORK FLOW

This paper has presented a model based on high-
dimensional computing, in which lexical vector space models
can be extended to include sequential, constructional, and
more elaborate linguistic items by explicit vector manip-
ulation. This enables the encoding of entire utterances in
a vector space similar to what is used for simple lexical
items and thus can be integrated with downstream classifiers
built to handle lexical representations, unifiying sophisticated
processing models with more sophisticated feature sets than
previously have been used. The model is explicit, in that the
items under consideration are preserved in the representation
and are retrievable from it, which allows for hypothesis-based
experimentation. It allows for the inclusion of other vector
representations, e.g. from pretrained vocabulary models. It
invites joint experimentation with linguistic items of arbitrary
sophistication.

The relative weighting of the various features and feature
sets encoded in a representation using the above methods
will determine how similarity is understood, but there is a
general argument about how multiple features can and should
be used in a high-dimensional space which we discussed in
Section VI. One notable characteristic of this model is that



9

−0.2

0

0.2

0.4

Fig. 3. Cosine of feature vectors to state vector compared to random unrelated vectors in 100, 500, and 2,000 dimensions

the joint representation of all the above features: lexical items,
constructional items, semantic roles, and sequence triples can
be used for the features together, or with only some subset
of them. If the semantic space built from the joint vectors
Ūsum is probed with items encoded with only some of the
represented features, the other features will add some level of
noise, but not stand in the way of experimentation. Thus, probe
utterances such as the ones given above in Example (3) could
be encoded for sequential triples alone, to retrieve utterances
that have similar constituent structure, with no attention paid
to what the lexical content of the utterances are, without need
of reencoding the entire collection of items. This versatility of
the representation allows for a generous encoding of features
to be used in more targeted experimentation as the hypothesis
space of a research task becomes more distinct.

VIII. ACKNOWLEDGMENTS

Jussi Karlgren’s work was done as a visiting scholar at the
Department of Linguistics at Stanford University, supported
by a generous VINNMER Marie Curie grant from VINNOVA,
the Swedish Governmental Agency for Innovation Systems.
Pentti Kanerva’s work was supported by Intel Strategic Re-
search Alliance program on Neuromorphic Architectures for
Mainstream Computing and by NSF 16-526: Energy-Efficient
Computing: from Devices to Architectures (E2CDA), a joint
initiative between NSF and SRC.

REFERENCES

Baroni, M. and A. Lenci 2010. Distributional memory: A general framework
for corpus-based semantics. CL 36(4).
Baroni, M. and R. Zamparelli 2010. Nouns are vectors, adjectives are
matrices: Representing adjective-noun constructions in semantic space. In
EMNLP. ACL.
Bird, S., E. Klein, and E. Loper 2009. Natural language processing with
Python: analyzing text with the natural language toolkit. O’Reilly Media.
Clark, S., L. Rimell, T. Polajnar, and J. Maillard 2016. The Categorial
Framework for Compositional Distributional Semantics. Univ of Cambridge
Computer Laboratory.
Cohen, T. and D. Widdows 2017. Embedding of semantic predications.
Journal of biomedical informatics 68.
Croft, W. 2005. Radical and typological arguments for radical construction
grammar. In Construction Grammars: Cognitive grounding and theoretical
extensions. John Benjamins.
Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man 1990. Indexing by latent semantic analysis. Journal of the American
society for information science 41(6).
Dubin, D. 2004. The most influential paper Gerard Salton never wrote.
Library Trends 52(4).
Frady, E. P., D. Kleyko, and F. T. Sommer 2018. A theory of sequence
indexing and working memory in recurrent neural networks. Neural
computation 30(6).
Gallant, S. I. and T. W. Okaywe 2013. Representing objects, relations, and
sequences. Neural computation 25(8).

Gayler, R. W. 1998. Multiplicative binding, representation operators &
analogy. In D. Gentner, K. J. Holyoak, and B. N. Kokinov (Eds.), Advances
in analogy research: Integration of theory and data from the cognitive,
computational, and neural sciences. Sofia: New Bulgarian University.
Gayler, R. W. 2004. Vector symbolic architectures answer Jackendoff’s
challenges for cognitive neuroscience. arXiv:cs/0412059.
Harris, Z. 1968. Mathematical structures of language. Interscience
Publishers.
Joshi, A., J. T. Halseth, and P. Kanerva 2016. Language geometry using
random indexing. In International Symposium on Quantum Interaction.
Springer.
Kanerva, P. 2009. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive Computation 1(2).
Kanerva, P., J. Kristoferson, and A. Holst 2000. Random indexing of text
samples for latent semantic analysis. In Cognitive Science Society.
Karlgren, J. and P. Kanerva 2018. Hyperdimensional utterance spaces—a
more transparent language representation. In Design of Experimental Search
& Information Retrieval Systems (DESIRES).
Landauer, T. K. and S. T. Dumais 1997. A solution to Plato’s problem: The
Latent Semantic Analysis theory of acquisition, induction, and representation
of knowledge. Psychological review 104(2).
Levy, O., Y. Goldberg, and I. Dagan 2015. Improving distributional similarity
with lessons learned from word embeddings. TACL 3.
Manning, C. D., M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky 2014. The Stanford CoreNLP natural language processing
toolkit. In ACL System Demonstrations.
Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean 2013.
Distributed representations of words and phrases and their compositionality.
In NIPS.
Mitchell, J. and M. Lapata 2008. Vector-based models of semantic compo-
sition. In ACL-HLT.
Mitchell, J. and M. Lapata 2010. Composition in distributional models of
semantics. Cognitive science 34(8).
Padó, S. and M. Lapata 2007. Dependency-based construction of semantic
space models. Computational Linguistics 33(2), 161–199.
Papadimitriou, C. H., P. Raghavan, H. Tamaki, and S. Vempala 2000.
Latent semantic indexing: A probabilistic analysis. J Computer and System
Sciences 61(2).
Plate, T. 1991. Holographic reduced representations: Convolution algebra
for compositional distributed representations. In IJCAI. Morgan Kaufmann.
Plate, T. A. 2003. Holographic Reduced Representation: Distributed
representation for cognitive structures. Number 150 in CSLI Lecture notes.
CSLI Publications.
Polajnar, T., L. Fagarasan, and S. Clark 2014. Reducing dimensions of
tensors in type-driven distributional semantics. In EMNLP.
Sahlgren, M. 2006. The Word-Space Model: Using distributional analysis to
represent syntagmatic and paradigmatic relations between words in high-
dimensional vector spaces. PhD Dissertation, Department of Linguistics,
Stockholm University.
Sahlgren, M. 2008. The distributional hypothesis. Rivista di Linguistica
(Italian J Linguistics) 20.
Sahlgren, M., A. C. Gyllensten, F. Espinoza, O. Hamfors, J. Karlgren,
F. Olsson, P. Persson, A. Viswanathan, and A. Holst 2016. The Gavagai
Living Lexicon. In LREC. ELRA.
Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to
encode order in word space. In CogSci.
Salton, G., A. Wong, and C. S. Yang 1975. A vector space model for
automatic indexing. Commun. ACM 18(11).
Sandin, F., B. Emruli, and M. Sahlgren 2017. Random indexing of
multidimensional data. Knowledge and Information Systems 52(1).
Schütze, H. 1993. Word space. In Proceedings of the 1993 Conference
on Advances in Neural Information Processing Systems, NIPS’93, San
Francisco, CA, USA, pp. 895–902. Morgan Kaufmann Publishers Inc.



10

Weeds, J., D. Weir, and J. Reffin 2014. Distributional composition using
higher-order dependency vectors. In Workshop on Continuous Vector Space
Models and their Compositionality (CVSC).
Widdows, D. and T. Cohen 2014. Reasoning with vectors: A continuous
model for fast robust inference. Logic Journal of the IGPL 23(2).
Wu, S. and W. Schuler 2011. Structured composition of semantic vectors. In
Intl Conference on Computational Semantics. Association for Computational
Linguistics.


