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1. REQUIREMENTS FOR A PRACTICAL
MODEL OF MEANING

A reasonable requirement (among many others) for a lexical
or semantic component in an information system is that it
should be able to learn incrementally from the linguistic data
it is exposed to, that it can distinguish between the topical
impact of various terms, and that it knows if it knows stuff
or not.

We work with a specific representation framework – se-
mantic spaces – which well accommodates the first require-
ment; we study the global qualities of semantic spaces by a
topological procedure – mapper – which gives an indication
of topical density of the space; we examine the local con-
text of terms of interest in the semantic space using another
topologically inspired approach which gives an indication of
the neighbourhood of the terms of interest. Our aim is to
be able to establish the qualities of the semantic space un-
der consideration without resorting to inspection of the data
used to build it.

2. DISTRIBUTIONAL MODELS
Distributional models, such as collocational analyses or prob-
abilistic language models, are based on the analysis of ob-
served item distribution and collocation in linguistic data
and have a long history in linguistics. [3] Today, they pro-
vide a theoretical base and profitable results for tasks such
as speech recognition, language modelling and information
retrieval.

In general, distributional semantic models use the notion
of distance between two words to describe relation in mean-
ing. This combination of distributional data with a geomet-
ric interpretation is what defines semantic spaces. [15, 14]
The geometric model is appealing: the notion of closeness
in meaning speaks to our intuitions about how semantics
work. This, however, would seem to be a somewhat false
friend. Our geometric intuitions do not hold water for sev-
eral thousand-dimensional spaces. Also, the metaphor of
closeness does not deliver useful help if more complex se-
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mantic relations are considered or larger distances in the
space are queried: “What is the relation between bell pepper
and one-pass compiler”?; “Is cow closer to horse than cof-
fee is to tea”?; “Is a bullfinch closer to bird than LATEX is
to language”? Arguably those questions are meaningless for
human semantics, but are handily and uselessly answered
with great exactitude by geometric semantic spaces. [7]

3. GEOMETRY AND TOPOLOGY
The insight that geometric models are overly specific and
unwieldy, especially if built on realistic scale, is the moti-
vation for e.g. dimensionality reduction approaches, various
latent variable models [2, 12], graph-based models [11], and
e.g. Laplacian transforms such as in self-taught hashing [18,
17, 5]. We propose here to use generalise some of those in-
sights, and move from a semantic geometry to a semantic
topology.

Semantic space models have no natural scale and no given
base vectors. Topological models are resilient with respect
to scale, rotational transformations, deformations, and co-
ordinate choice, and can be constructed to focus on local
structure and similarity in near relations. [1] A topologi-
cal perspective of the data affords us an effective view of
the structure of models, and is useful for the diagnosis and
practical quality assessment of models which already have
proven to be of value in real-world applications.

The basis for our experimentation are semantic spaces cre-
ated using random indexing, [12] trained on various corpora
of relevance for information processing tasks which require
lexical semantics, e.g. ontology mapping, media monitoring,
or topic tracking. We currently use such semantic spaces in
practical large-scale industrial applications to find synonyms
or near-synonyms of terms of interest, and to track associa-
tive concepts over time, as an up-to-date lexical resource.
We frequently find we need to examine the models we have
trained to ascertain their qualities with respect to some topic
of interest. In these following experiments we will use mod-
els which are trained on traditional research corpora using
the same procedure we would use on internet data for com-
mercial purposes.

4. THE MAPPER PROCEDURE
Mapper, first introduced by Singh, Mémoli, and Carlsson
[16], is an algorithm based on topological principles to visu-
alize high dimensional data. The intuition behind Mapper
is to analyze the structure of the data as a whole instead of
analyzing the entire dataset in detail. Mapper is intended
to capture such regularities of massive data sets which are



obscured by focus on geometric coordinates, by transform-
ing the data set to a simplicial complex, a combinatorial and
discrete data structure. If the steps of this transformation
is done well, the resulting structure can be inspected to un-
derstand the characteristics of the data set.

Given a dataset D = di : di ∈ X, the Mapper procedure
can be given in 4 steps:

Filtering We analyze the data using a filter function f :
X → R which creates an image of the datapoints in R.
The filter function should capture some interesting or
relevant aspect of the data. In this case, in an analysis
of a semantic space, we can set f to be the distance
in that space of each point from a target notion of
interest.

Cover Given our dataset D, we structure it by appliying
a covering to its image f(D) by a set C of subsets of
R: where C = ci : ci ⊂ R. This covering can be given
by an expert or through other means. In our case we
use overlapping intervals of the filter function itself,
essentially grouping data into overlapping bins of a
histogram. The datapoints in each bin are given by the
datapoints with their image in the specified interval of
R.

Clustering The points in each bin, meaning each subset of
C (the elements in C are themselves subsets of R) are
then clustered individually. The clustering algorithm
can be chosen to be whatever clustering algorithm is
required. We use single-linkage clustering.

Graph A graph G is created with every individual cluster
from the clustering of the points in the subsets of C
as a node of G. When two clusters share a common
datapoint in D, an edge is drawn between the two
nodes that represent them.

We illustrate the procedure first using artificially generated
point cloud data, as shown in Figure 1. The data consists
of 5000 points randomly generated from a Gaussian dis-
tribution surrounding three centroids at [x, y] coordinates:
[10, 20], [−10,−10], [17,−10] with a standard deviation of
9. The filter function f was chosen to be Gaussian ker-
nel density estimation. The coloring of the points in the
graph follow the density estimation. The covering was set
to 7 intervals with an overlap of 10 percent. After Mapper
processing those same data can be visualized as shown in
Figure 2 using a similar colouring scheme. Here, the graph
shows that if the points at high density are clustered, there
are three clusters; the points at low density cluster into one.
Overlapping density ranges show the expected correspon-
dences from high to low.

This procedure, in our application of it to semantic spaces,
serves to illuminate shared structure across different dis-
tance scales of the semantic space by showing if the clus-
ter structure in one distance range correspond or differ from
another distance range.

5. GLOBAL TOPOLOGICAL CHARACTER
One of the specific questions we wish to investigate is that
of expertise. Given two semantic spaces, what is the extent
of training in some topical domain? We will assume that ex-
pertise, in the sense of being trained on a set of texts, should

Figure 1: Artificially generated geometric data

Figure 2: Geometric data transformed by Mapper

have effects on the topological makeup of the semantic space.
We trained two semantic spaces on general English-language
text1 and then added some selected topics to each of the
spaces. One semantic space was trained by including entire
Wikipedia articles related to the topics; another semantic
space was only given the introductory paragraphs of those
same articles. Thus both semantic spaces are familiar with
the foundational vocabulary of the topics, but one of them
would have a passing knowledge while the other would have
a more in-depth understanding of the topic.

If we now apply a filter function to the points of the se-
mantic space based on relation to T , the target concept of
interest, our expectation would be that in the one seman-
tic space, terms for probe concepts ti known to be related
to T should cluster relatively close to T ; in the other they
would be more or less randomly distributed over the scale
intervals. This is borne out in experiments. Figure 3 shows
the difference, as measured by a filter function defined by
ten probe words relative to the target topic “Finland”. The
graph shows how the probe words cluster both better with
respect to each other, and closer to the target.

6. LOCAL TOPOLOGICAL STRUCTURE
The second question we wish to address is that of differential
qualities of terms we have observed. Some words are more
topical than others, which has been observed in numerous
different research traditions, but most notably in practically
oriented text analysis. [9, 10, 6, 4, 13] We wish to examine

1Settings: 2000 random indexing dimensions, 2 + 2 con-
text, trained on the The British National Corpus. (Dis-
tributed by Oxford University Computing Services at url
http://www.natcorp.ox.ac.uk/).



Figure 3: Data for passing knowledge vs expertise for “Finland”

0 10 20 30 40 50 60 70 80 90 100 1100

20

40

60

80

100

angle (degrees)

di
m

en
sio

na
lit

y

january
february
march
april
may
june
july

august
september

october
november
december

mean

Figure 4: Local dimensionality at various angular
separation for names of months

the local structure of the semantic space around a term of
interest.

We recently experimented using a topologically related
approach to establish the density of a neighbourhood for
terms in a semantic space and to thus infer the intrinsic
dimensionality of the local space around the term. While
we expand the radius around the spatial coordinates of a
term of interest we record the rate of increase in number
of neighbours within that radius. We begin by establishing
how rapidly the number of neighbours of a term grows in
relation to the growth of the radius of the neighbourhood.
We define the rate of growth in the interval r ∈ I = [r1, r2]
to be

d =
log(n2/n1)

log(r2/r1)
, (1)

with ni being the number of observed term neighbours
within the radius ri. We use d as an estimate of the local
dimensionality around the probe term in r. Averaging the
results of those computations over an entire semantic space
we find that the local dimensionality was considerably lower
than that of the representation itself. [8]

Here, we follow a similar approach, but instead study the
particularities of individual terms, or specific categories of
term.2 In Figures 4, 5, 6, 7, we plot d at various radius

2Settings: 1000 random indexing dimensions, 2 + 2 context,
trained on the tasa corpus.
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Figure 5: Local dimensionality at various angular
separation for names of months, weekdays, colours
and auxiliary verbs

ranges on the surface of a unit hypersphere, with the radius
here graphed as the angle of separation between the probe
term vector and the neighbouring vectors.

As a first illustration, Figure 4 shows the rate of neigh-
bourhood growth curves for names of months, with the angle
as computed from the origin on the x-axis. Note that May
behaves differently from the other months, due to the poly-
semy of the word. Figure 5 shows a comparison of results
between names of months, weekdays, colours, and auxiliary
verbs. The latter have a much more flattened distribution;
the former three all have higher neighbourhood density at
lower angular distances, and then the majority of neighbours
at around ninety degrees, i.e. at maximum distance from the
term, indicating no semantic relation. This is to be expected
since months, weekdays, and colours all have fairly well de-
limited semantics and thus contexts of use, whereas auxil-
iaries can be expected to cooccur with numerous subjects
and verbs and thus have a much more promiscuous context.
This comparison would lead us to expect that content-heavy
words are likely to have neighbours accrue earlier, at smaller
angular distances.

A comparison between the figures in Figures 6 and 7 con-
firms this. One shows the neighbourhood growth curves for
the 150 most frequent words found in the corpus: the, be, to,
of, and, .... The other shows the same curves for some 300
terms which are found in Wikipedia: topic headers england,



0 10 20 30 40 50 60 70 80 90 100 1100

20

40

60

80

100

angle (degrees)

di
m

en
sio

na
lit

y
mean

Figure 6: Local dimensionality at various angular
separation for the most frequent words in the corpus
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Figure 7: Local dimensionality at various angular
separation for the most frequent words in the corpus

mississippi, instagram, socrates ... . The form of the curves
are clearly different even at a cursory inspection.

To verify this observation, we performed several simple
categorisation experiments, based on minimising square er-
ror to the dimensionality graprh, to distinguish parts of
speech and term lists of various classes of word. Table 1
shows the result of categorising the classes given in Figure 5.
Similarly useful results were found between other categories
of term such as various semantic categories of verbs.

7. CONCLUSIONS
Semantic spaces, a useful learning framework for lexical re-
sources, are typically treated as black boxes and applied us-
ing geometric and linear algebraic processing tools. We have
found that topological methods are useful for exploring the
makeup of a semantic space.
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