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Abstract. Word space models, in the sense of vector space models built
on distributional data taken from texts, are used to model semantic re-
lations between words. We argue that the high dimensionality of typical
vector space models lead to unintuitive effects on modeling likeness of
meaning and that the local structure of word spaces is where interesting
semantic relations reside. We show that the local structure of word spaces
has substantially different dimensionality and character than the global
space and that this structure shows potential to be exploited for further
semantic analysis using methods for local analysis of vector space struc-
ture rather than globally scoped methods typically in use today such as
singular value decomposition or principal component analysis.

Vector space models

Vector space models are frequently used in information access, both for research
experiments and as a building block for systems in practical use. There are nu-
merous implementations of methods for modeling topical variation in text using
vector spaces. These and related methods are used for information access or
knowledge organisation of various levels of abstraction, all more or less based
on quasi-geometric interpretations of distributional data of words in documents.
Vector space models in various forms have been implicit in information retrieval
practice at least since the early 1970’s and their origin has usually been at-
tributed to the work of Gerard Salton. His 1975 paper titled “A vector space
model for automatic indexing” [1], often cited as the first vector space model,
does not in fact make heavy use of vector spaces, but in his later publications
the processing model was given more prominence as a convenient tool for topi-
cal modeling (see e.g. Dubin for a survey [2]). The vector space model has since
become a staple in information retrieval experimentation and implementation.

Distributional data collected from observation of linguistic data can be mod-
eled in many ways, yielding probabilistic language models as well as vector space
models. Vector space models have attractive qualities: processing vector spaces
is a manageable implementational framework, they are mathematically well-
defined and understood, and they are intuitively appealing, conforming to ev-
eryday metaphors such as “near in meaning”. In this way, vector spaces can be
interpreted as a model of meaning, as semantic spaces. In this sense, the term
“word space” is first introduced by Hinrich Schütze: “Vector similarity is the
only information present in Word Space: semantically related words are close,
unrelated words are distant” [3]. While there is some precedent to this definition



in linguistic and philosophical literature, none of the classic claims in fact give
license to construct spatial models of meaning: to do so, we first must examine
how the model we build in fact preserves and represents the sense of meaning it
sets out to capture.

How many dimensions?

Much of the theoretical debate on vector space models has to do with how many
dimensions a semantic word space should have. The typical bare vector space
of terms by contexts gives a word space of tens or hundreds of thousands or
even millions of dimensions, a large number which typically, in most approaches,
continues to grow when more data are added. Most every element of a typical
word vector will be zero which seems a waste of dimensions, most words ap-
pear to be polysemous to some extent, and most concepts – taken on a suitably
coarse-grained level of analysis – would seem to be representable by many dif-
ferent lexical items. Without further treatment of the data a bare model fails
to generalise between terms with similar but non-identical distribution patterns.
This calls for the informed reduction of dimensions to a smaller number, both
for ease of processing and to be able to capture similarities.

What then seems to be an appropriate dimensionality? The word space re-
search field frequently searches for a “latent”, or intrinsic, dimensionality in the
data, lower than the bare dimensionality resulting from the data collection. This
intrinsic dimensionality can potentially be found by processing the data set in
some informed way [4, e.g.]. Most efforts heretofore have used global measures
such as singular value decomposition or principal component analysis to process,
examine or reduce dimensions of the observed data. Some claims as to what this
intrinsic dimensionality might be are o(100) for data processed by singular value
decomposition in the popular latent semantic analysis framework [5] and o(1000)
for data processed by us in previous work using the more recent random indexing
approach [6]. These figures are obtained by reprocessing the data set with pa-
rameter variation based on trial-and-error experimentation, typically evaluated
by synonym tests.

In this paper, in contrast with previous dimension reduction approaches, we
argue that this appropriate dimensionality is determined locally, not globally, in
the space. We base our argument on an inspection of the character of a typical
vector space model built from textual data.

Are there large distances in semantic spaces?

There is a huge theoretical leap from the realisation that words are defined by
their contexts to furnishing a whole vector space based on the postulated dis-
tances between words – however those distances are defined and however the
distributional data are collected. What sort of information are the distances
supposedly based on? It would seem there is very little purchase in the data
to base any sort of distance between say “tensor” and “cardamom” or between
“chilblain”, “child-birth” and “chiliad”. There is a limit to what questions one



can expect a word space built by distributional data to answer. The intuitively
attractive qualities of a semantic representation where meaning is distributed
about a many-dimensional vector space leads us to forget that the only interest
we ever will show the space is in its local neighbourhoods. Returning to the
original discussion on word spaces cited above: “Vector similarity is the only
information present in Word Space: semantically related words are close, unre-
lated words are distant” [3], we claim that “close” is interesting and “distant”
is not, and that vector space models are overengineered to handle information
that never is relevant in language modeling.

In this paper, the question we address is what sort of dimensionality one
might need to model the context of a term – as opposed to how many dimensions
would be necessary if one would wish to attempt to model the structure of an
entire large sample of language in one contiguous and coherent space. We will
investigate the local character of word spaces – the structure of the space within
which semantically related words are expected to be found.

What is a typical angle between random pairs of words?

Human topological intuitions are based on our experiences in a two-to-three
dimensional world. We live our lives more or less on a plane with occasional
ventures or glances up or down from it. Many-dimensional spaces are in some
important respects very different from two-to-three dimensional spaces. One such
unintuitive feature of a high dimensional space is that two randomly picked
points on e.g. a unit hypersphere are almost always at near orthogonal angles
to each other with respect to the origin. The graphs displayed in Figure 1 show
the probability distribution of the resulting angle between two randomly chosen
points in 3-, 10-, and 1000-dimensional spaces respectively.
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Fig. 1. Probability distribution for angles between directions to randomly chosen points
in many-dimensional spaces.

The given distribution of points (and thus angles) has practical consequences
for semantic models. In low dimensional spaces, given our experience of the phys-
ical world, we find it easy and intuitive to reason about distances. For example,
if point A is close to point B, and point B is close to point C, then point A is
fairly close to C. This makes it natural to imagine clusters of samples close to
each other but separated from samples in other clusters.



However, in high dimensional spaces the transitivity of distance is not nec-
essarily as obvious. It may well be that points A and C are both close to point
B but still at considerable distance from each other. The triangle inequality still
holds in high dimensional Euclidean spaces; the problem is that whereas an an-
gle of 90◦ between two words always will mean that the words are completely
unrelated, in a thousand-dimensional space an angle of 45◦ means a remark-
able degree of similarity. This makes the notion of a cluster less useful in high
dimensional spaces (a similar argument is given by Beyer et al. [7]).

What does a word space look like?

For this experiment we have constructed a vector space, Vtext, from textual data
as provided in the tasa corpus[8], a corpus of short high-school level English
texts on various factual subjects such as language, health, business and other
general school curriculum related topics. The corpus consists of about 10 million
words, 37 600 text samples, and 27 000 distinct terms.

To build the word space, we use the random indexing approach as described
by Sahlgren [9]. We choose random indexing for two main reasons. First, its
authors make strong claims about appropriate representational dimensionality,
and indeed have set drepresentation, the dimension of the representation, as a set-
table parameter for the algorithm. Second, where in most indexing approaches
each distinct term encountered in the text is assigned a binary index vector
with all elements zero and one element 1, random indexing assigns each distinct
term a ternary index vector with most elements zero and some randomly as-
signed elements either 1 or -1. Using random indexing thus avoids overloading
the positive section of the vector space: by the use of negative vector elements
in the representation it has the resulting word space occupy the entire possible
vector space. This is desirable for our experiment, since we want to be able to
relate the observed distribution of words to the expected distribution over the
entire hypersphere, without leaving large swathes of vector space vacant. (The
fact that most vector space models only operate in the positive sector of the
multi-dimensional space is usually never discussed.)

Random indexing is convenient for our purposes, and the validity of the
results is spoken for by Johnson-Lindenstrauss’ lemma [10], the basis of random
projection approaches, which states that a vector space (in this case, the term-
by-context matrix, which is of immense dimensionality) can be projected into a
random subspace of appropriate dimensionality (in this case, Vtext of dimension,
drepresentation) without corrupting the relative distances between points in the
space.

In this experiment, Vtext is built from occurrence data collected from a rolling
2 + 2 window over the text segments, a setting which has previously been shown
by us to provide consistent results in extrinsic evaluation schemes [11]. The
dimensionality, drepresentation, is set to 10 000, higher than most published ex-
periments using random indexing, with five randomly positioned 1’s and five
randomly positioned -1’s for the initial index vectors. The relatively high choice



of drepresentation was chosen to ensure that the global dimensionality is high
enough not to distort or constrain any local subspace structure.

A sample of 1 000 000 pairs of words were randomly selected from the ma-
terial and the angles between them tabulated. The first neighbours in our test
material appear at an angle of about 30◦. Further neighbours are found at an
rapidly increasing rate, and as expected, the distribution peaks around 90◦. Fig-
ure 2 shows the distribution of angles between words in the sample from Vtext.
By comparing with the expected random distributions given in Figure 1 we find
that the shape of the distribution for the observed data yields a global dimen-
sionality of o(10 000), around the dimensionality of the representation. But the
distribution in Figure 2 does not match the theoretical distributions in every
detail. If we zoom in on the base, as shown in the right graph, we find structure
in the left tail. This represents a non-homogenous distribution at smaller angles
between word vectors than would have been expected if the words were homoge-
neously distributed in the 10 000-dimensional space. It is in this neighbourhoood
we find the non-random, i.e. semantically interesting, word-word relations.

30 60 90 120 150 180

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90

10000

20000

30000

40000

50000

Fig. 2. Observed distance distributions; rightmost graph zoomes in on left tail.

To analyse the intrinsic dimensionality of a local region of word space we
use a method from the analysis of fractal dimensions. The method rests on the
mathematically trivial observation that if we have samples homogeneously dis-
tributed in a d−dimensional space, the number of samples within a hypersphere
of radius r increases proportionally to rd. For example, if we double the radius
of a circle in a two-dimensional space the number of samples within the circle
will increase by a factor of four, and for a sphere in a three dimensional space
with a factor of eight. To measure the intrinsic dimensionality of the word space
we examine the neighbourhoood of a point within it: we begin by counting the
number of samples within a sphere of some radius r, and then we double r and
count again. If the number of samples increases at a rapid rate, this means a
higher dimensionality. In detail, the dimensionality d in the span between two
radii r1 and r2 is here computed by

d =
log(nr2/nr1)
log(r2/r1)



where nr1 and nr2 are the observed numbers of samples within those radii.
An advantage with this method to measure intrinsic dimensionality is that

it can measure the dimensionality locally on the small scale, as well as medium
scale, or large scale, as opposed to e.g. principal component analysis or singular
value decomposition which can only be used to compute intrinsic dimensionality
on the global scale. This enables us to compare the intrinsic dimensionality of
local contexts with the global dimensinality.

Using the above method of analysis of the fractal dimension of the samples
in the left tail we find a local intrinsic dimensionality somewhere just below
10, somewhat depending on where the tail is cut off, i.e. exactly how small
scale structure we care to investigate. These findings support our claim that
there indeed is a local neighbourhood for a typical vector: even allowing for
a substantial margin of error due to the amount of noise in the data and the
somewhat crude methodology, we find that the local dimensionality is several
orders of magnitude less than that of most vector space models today, including
those that use dimension reduction techniques.

Can we model the local neighbourhood in word spaces?

In our experimental data and the word space Vtext, we found, as shown in Fig-
ure 2, that the number of neigbours at small distances was greater than what
would be expected from a theoretical completely homogeneous case. But we also
saw that the small scale dimensionality was much less (< 10) than the large
scale dimensionality (≈ 10 000). So, more neighbours, but lesser dimensional-
ity. This gives us some clues to the local structure of the space. Consider the
hand-made example graphs in Figure 3. The first graph shows a fairly homoge-
neous distribution of observations, both neighbours and dimensionality, in some
subspace of a larger-dimensional space. If the observations instead were “clus-
tered” or “lumpy” as in the second graph, then there is a higher number of
small distances between samples than in the homogeneous case, but the small
scale dimensionality of the subspace will be the same as the large scale dimen-
sionality of the space. However, in the case shown in the third graph where the
observations are found to occur in a filamentary structure, the number of small
distances are also increased, but the small scale dimensionality (one-dimensional,
along the filaments, in the figure) is smaller than the large scale dimensionality
(two-dimensional, across the plane, in the figure).

This allows us to suggest that the word space is primarily neither homoge-
neous nor lumpy, but filamentary in its structure, and that these filaments, which
are of much lower dimensionality than usually considered in semantic models is
where the key to modelling similarity of meaning may reside.

How much data do we need to train a knowledge representation?

It is often claimed that models of meaning based on distributional data need huge
data sets for training. However, it is simple to observe that in actual language use
only very few occurrences are in practice necessary to model the approximative
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Fig. 3. Neighbourhoods of different character.

meaning of a newly encountered term. How many occurrences of “Jarlsberg” do
you need to figure out what manner of beast it is? Training data found by one of
the more popular web search engines are given in Figure 4. This would seem to
speak to the fact that semantic context in realistic knowledge representations in
fact will be saturated rather rapidly even by a small set of sample observations,
that semantic similarity in fact is modellable by few dimensions rather than a
plentitude. The data collected for any single term can be fairly assumed to tell
us a fair amount about the term in question – and of other terms that occur
similarly. The distributional data for some term will, however, not tell us much
about every other term in the language and relations from the observandum to
them. This observation is borne out by the data analysis from our experiment.

The famous Jarlsberg cheese is known for its distinctive sweet
and nutty taste ...

The largest producer of Jarlsberg today is the Tine BA factory in ...

Within a few decades Jarlsberg has become one of Norway’s
greatest export successes ...

Jarlsberg is the most popular Norwegian cheese in the UK. ...

Fig. 4. What does “Jarlsberg” mean?

Ramifications for word spaces

Our conclusions and claims are three-fold. Firstly, that the most interesting qual-
ities of word spaces are found in their local structure rather than their global
dimensionality, and that thus much of the discussion of representational dimen-
sionality, latent semantic dimensionality, and of global methods for dimension
reduction is of lesser theoretical and practical import. Secondly, since the high
dimensionality of the global model saddles the practical system with tractability



bottle-necks in processing, maintenance, and deployment, optimising the global
character of the model is likely to provide respectable gains in efficiency. How-
ever, any claims of semantic relevance of such optimisations should be viewed
with skepticism unless they expressly take local context into account. Thirdly,
that elaborating the structure of the local filamentary structure further is likely
to lead to less demanding models as regards size of training data sets. We do
not claim to yet have a framework for how to realise such models.

We want to stress that these results are not meant to be part of the discussion
of appropriate choice of dimensionality in vector space models. However, we
believe that studying the local structure of vector space models will cast light on
the structure of textual data, give insights into the design of future processing
models, and provide new starting points for the informed design of semantic
representations based on distributional data, whether in vector space models or
not.
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