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26 From Words to Understanding
Jussi KARLGREN AND MAGNUS SAHLGREN

As was discussed in section 22, language is central to a correct under-
standing of the mind. Compositional analytic models perform well in
the domain and subject area they are developed for, but any extension
is difficult and the models have incomplete psychological veracity. Here
we explore how to compute representations of meaning based on a lower
level of abstraction and how to use the models for tasks that require
some form of language understanding.

26.1 The Meaning of ‘Meaning’

The use of vector-based models of information for the purpose of rep-
resenting word meanings is an area of research that has gained consid-
erable attention over the last decade. A number of different techniques
have been suggested that demonstrate the viability of representing word
meanings as semantic vectors, computed from the co-occurrence statis-
tics of words in large text data (e.g. Deerwester et al., 1990; Schiitze,
1992; Lund and Burgess, 1996). Unfortunately, the philosophical ratio-
nale for this practice has remained tacit, which is remarkable since the
vector-based models purport to uncover and represent word meanings.
What, one might ask, are those meanings that the words of our lan-
guage apparently have? Are they perhaps some form of mental concepts
that exist in the minds of language users, or are they merely the objects
named by the words, and if so, how do we represent something like it in
a computer system? It seems that we need to know what it is we want
to represent before we can start thinking about how to represent it in
a computer system. Succinctly, it seems as if the recourse to semantics
demands an explanation of the meaning of ‘meaning’.

Ludwig Wittgenstein suggests in Philosophical Investigations (1953)
that we should view meaning as something founded in linguistic praxis,
and that the meaning of a word is determined by the rules of its use
within, as he puts it, a specific language-game. This suggestion led to
the famous dictum “meaning is use,” which is sometimes referred to as a
Wittgensteinian theory of meaning. The idea is that to understand the
meaning of a word, one has to consider its use in the context of ordi-
nary and concrete language behavior. To know the meaning of a word
is simply to be able to use the word in the correct way in a specific
language-game or linguistic praxis. This line of reasoning thus allows us
to define semantic knowledge as that which we make use of when suc-
cessfully carrying out linguistic tasks. According to this way of thinking,
meaning is the vehicle by which language travels.
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Thus it is language itself and not the concept of meaning that is pri-
mary to Wittgensteinian semanticist. The question about the meaning
of ‘meaning’ must therefore be answered “from within” a theory of lan-
guage, since words do not (and in a stronger sense cannot) have meaning
outside language. That is, it does not make any sense to ask what the
meaning of a word is in isolation from its use in language, since it is only
by virtue of this use that the word has meaning. The lack of rigid desig-
nations regarding the concept of meaning facilitates our understanding
of language as a dynamic phenomenon. What we need in order to un-
derstand the nature of meaning is not so much a rigid definition of the
concept of meaning, but rather a profound understanding of the inherent
structures of natural language. In short, what we need is a structuralistic
account of language.

Using such a relatively agnostic theory of meaning, we will in what
follows attempt to exemplify its utility for information-access tasks, ar-
guably the most important and applied of language-technology tasks,
and one that relies crucially on some form of textual understanding.

26.2 A Case in Point: Information Access

Text is the primary repository and transmitter of human knowledge.
Many other types of knowledge representation have been proposed and
used for specific purposes, but for most purposes text has proven ef-
ficient, flexible, and compact for generation, storage, and access. But
while accessing information in text is simple and unproblematic for a
human reader, finding the right text to access may be difficult. Com-
puter systems can be of help here, but to do this, systems must have
some form of understanding of text content.

26.2.1 System View of Documents

Information-access systems view documents as carriers of topical infor-
mation and hold words and terms as reasonable indicators of topic. The
techniques used for analysis and organization of document collections
are focused primarily on word and term occurrence statistics. Docu-
ments and information needs alike are analyzed in terms of words.
Although this simple approach has its obviously effective characteris-
tics, it also has some drawbacks. The results provided by information-
access systems of today are unimpressive: by the standard metrics de-
fined and practiced in the field, nothing like optimal performance is
delivered by any system. To some extent, this is a problem that has to
do with the indeterminacy of the evaluation metrics themselves: Rele-
vance is an ill-defined characteristic of documents. But to a great extent
systems do not deliver what should and could be expected of them be-
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F1GURE 26.1. The standard model of information retrieval.

cause they model topic and text unsatisfactorily. Although the model is
simple and designed not to rely on brittle theory, it does not reflect the
underlying structure of textual information transmission sufficiently for
purposes of designing useful systems for information access.

26.2.2 The Standard Model for Information Retrieval

The standard model for information retrieval and the basis for most
information-system design is roughly as shown in figure 26.1. There is
some body of texts; information requests are put to some system that
handles this body of texts; the texts are analyzed by some procedure
to yield a nontextual representation of them; the information requests
are likewise analyzed by an identical or similar procedure to yield a
query. The two representations are then matched. The texts with the
best matches are presented as potential information sources to fulfill the
request.

The point of the analysis is to facilitate matching by (1) reducing
the amount of information, to make the representations manageable—it
must somehow counter the variability of language and the freedom it
affords language users—and (2) resolving the vagueness and indetermi-
nacy inherent in language. The resulting representations are assumed in
some way to be alinguistic and amenable to pure formal manipulation.

This quite intuitive and in many ways appealing model hides the com-
plexity of human language use from the matching procedure, which can
then be addressed using formal methods. This is not entirely to the bene-
fit of the enterprise. The very same mechanisms that make the matching
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complicated—the vagueness and indeterminacy of human language—are
what make human language work well as a communicative tool. Aware-
ness of this is typically abstracted out of the search process. The major
difference between using an automated information-retrieval system and
consulting with a human information analyst is that the latter normally
does not require the request to be transformed into some invariant and
unambiguous representation; neither does the human analyst require the
documents themselves to be analyzed into such a representation. A hu-
man analyst not only copes with but utilizes the flexibility of information
in human language: It is not an obstacle but an asset. For nontrivial re-
trieval as performed by humans, concepts glide into each other painlessly
and with no damage done to the knowledge representation they utilize,
and documents that have previously been thought to be of some spe-
cific type or topic can be retrieved for perfectly new and unexpected
purposes.

26.3 Words as Content Indicators

The basic drawback of the systems of today is their impoverished picture
of text content. They treat texts as containers for words, and words as
neat and useful indicators of content. But there is no exact matching
from words to concepts. Words are vague, both polysemous and incom-
plete: every word means several things and every thing can be expressed
with any one of several words. Words suffer from the combined drawback
of being ambiguous and nonexclusive as indicators of content.

Any representation of content should transcend this inherent ambigu-
ity of words—and this is how our kind of model is intended to improve
matters.

26.3.1 The Distributional Hypothesis

Viewed from a structuralistic perspective, natural language may be char-
acterized as a sequence of semantically arbitrary symbols (i.e. words).
The symbols are semantically arbitrary since it is not their physical
properties that determine their meaning. Rather, it is the relations be-
tween the symbols of the sequence that define them. This is to say that
the meanings of the symbols in the sequence do not derive from any
inherent semantic properties of the symbols.

This relational aspect of meaning can be seen if we consider a pol-
ysemous word, for example ‘fly’, which has a different meaning in the
context of A, for example in texts referring to aerial activities, than in
the context of B, for example in texts about insects. The reason the
word has different meanings in these different contexts is not that it has
a different inherent semantic property in the context of A than in the
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context of B, for that would mean that a word could change its inherent
semantic properties at any time, making linguistic communication, un-
derstanding, and hence language itself virtually impossible. The reason
for the different meanings of the word is rather that the context of A is
different from that of B.

This characterization of natural language as a linear sequence of se-
mantically arbitrary elements allows us to formulate a theory of meaning
known as the distributional hypothesis. The theory originates from the
work of Zellig Harris, who, in his book Mathematical Structures of Lan-
guage (1968, p. 12), states that “the meaning of entities, and the mean-
ing of grammatical relations among them, is related to the restriction
on combinations of these entities relative to other entities.”

These combinatorial restrictions can be viewed as semantic constraints
that govern the distribution of entities in language. That is, if two sepa-
rate entities occur in combination with the same set of other entities C,
the distribution of the two separate entities are governed by the same
semantic constraints that are manifested in the distributional pattern
that consists in the co-occurrence with C'. It is by virtue of this distri-
butional similarity that the entities have similar meaning. This is to say
that similarity in distribution implies similar values of semantic infor-
mation.

The merit of this hypothesis in relation to the Wittgensteinian account
of meaning is that the distributional patterns of words can be thought
of as manifesting language use. That is, the use of a word is manifested
by its distribution in language, which in turn is defined by the contexts
in which the word occurs. This means that the context could be utilized
as a measure of distribution, by which the use (and thus also the mean-
ing) of a word could be determined. Thus, if the meaning of a word is
determined by its use in language, and its use is manifested by its distri-
bution, the distributional patterns as defined by the contexts of a word
can be seen as viable tools for determining the meaning of that word.

The idea is that words are semantically similar to the extent that they
share contexts. If two words w; and ws, say ‘beer’ and ‘wine’, frequently
occur in the same context C', say after ‘drink’, the hypothesis states
that w; and wy are semantically related, or, stated more strongly, that
they are semantically similar. The semantic similarity (or relatedness) of
‘beer’ and ‘wine’ is thus due to the similarity of usage of these words. This
means that the categorization of both words as, for example, referring
to alcoholic beverages is possible only because we use them in such a
way; for example, after the word ‘drink’ and in the vicinity of the word
‘drunk’. The categorization is not a cause of usage but a consequence.

In an attempt to formalize these ideas, we could say that the meaning
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M of a word w is determined by its distribution D in text T. D over T
can be defined as the union of the contexts C in which w occurs. Thus, if
D(w,T) (the distribution of w in T') determines M (w) (the meaning of
w), and D(w, T) equals Y {C' | w € C} (the contexts in which w occurs),
this can be seen as a representation of M (w). This representational
scheme thus justifies the claim that word meanings can be uncovered
and represented in computer systems. It also justifies the claim that this
can be done without forcing us to commit to any particular ontology
about what these meanings are. Rather, it is because we do not demand
any rigid definition of the concept of meaning that this representational
scheme becomes feasible.

26.4 Latent Semantic Analysis

This representational scheme is the communal rationale for vector-based
semantic analysis. The assumption that “words with similar meanings
will occur with similar neighbors if enough text material is available”
(Schiitze and Pedersen, 1997) is central to all the various approaches.
What separates them is how they implement the idea. The pioneering
technique in this area of research, latent semantic analysis (LSA) (Lan-
dauer and Dumais, 1997), collects the text data in a words-by-documents
co-occurrence matrix where each cell indicates the frequency of a given
word in a given text sample of approximately 150 words. The words-by-
documents matrix is normalized by using logarithms of word frequencies
and entropies of words across all documents. The normalized matrix is
then transformed with singular-value decomposition into a much smaller
matrix. This dimension reduction appears also to accomplish inductive
effects, reminiscent of human psychology, by capturing latent semantic
structures in the text data. Words (or, more to the point, concepts) are
thus represented in the reduced matrix by semantic vectors of dimen-
sionality n (300 proving to be optimal in Landauer and Dumais’s 1997
experiments).

A similar approach is taken by Schiitze and Pedersen (1997), who
represent the text data as a words-by-words co-occurrence matrix where
each cell records the number of times that the word pair occurs in a
window spanning 40 words. However, such a matrix with v?/2 distinct
entries, where v is the size of the vocabulary, becomes computationally
intractable for large vocabularies, so they first approximate the matrix
using class-based generalization in two steps and then transform it with
singular-value decomposition, so that words are represented in the final
reduced matrix by dense semantic vectors of dimensionality n (n = 20
in Schiitze and Pedersen, 1997). The motivation for reducing the dimen-
sionality of the approximated matrix with singular-value decomposition
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is, as in LSA, that it improves generalization and makes the representa-
tions more compact.

This kind of representational scheme where words are represented as
semantic vectors that are calculated from the co-occurrence statistics of
words in large text data has proven to be both computationally advanta-
geous and cognitively justified. The drawback of singular-value decompo-
sition is that it places heavy demands on computing time and memory,
which suggests that an alternative way of achieving the inductive ef-
fects of dimension reduction might be worth considering. A number of
techniques for doing so have been proposed under such names as ran-
dom mapping (Kaski, 1998), random projections (Papadimitriou et al.,
1998), and random indexing (Kanerva et al., 2000), and they have the
same underlying mathematics.

26.5 Random Indexing

In previously reported experiments with random indexing (Kanerva et
al., 2000), documents of approximately 150 words each are represented
as high-dimensional random index vectors (dimensionality > 1,000) that
are accumulated into a words-by-documents matrix by adding a docu-
ment’s index vector to the row for a given word every time the word
appears in that document. The method is comparable to LSA, except
that the resulting matrix is significantly smaller than the words-by-
documents matrix of LSA, since the dimensionality of the index vec-
tors is smaller than the number of documents. By comparison, assuming
a vocabulary of 60,000 words in 30,000 documents, LSA would repre-
sent the data in a 60,000 x 30,000 words-by-documents matrix, whereas
the matrix in random indexing would be 60,000 x 1,800 when 1,800-
dimensional index vectors are used. This seems to accomplish the same
inductive effects as those attained by applying singular-value decompo-
sition to the much larger matrix, but without the heavy computational
load that singular-value decomposition requires.

In the present experiment, the high-dimensional random vectors of
random indexing have been used to index words and to accumulate a
words-by-contexts matrix by means of narrow context windows consist-
ing of only a few adjacent words on each side of the focus word. As an
example, imagine that the number of adjacent words in the context win-
dow is set to two. This would imply a window size of five space-separated
linguistic units, i.e. the focus word and the two words preceding and suc-
ceeding it. Thus the context for the word ‘is’ in the sentence ‘This parrot
is no more’ is ‘This parrot’ and ‘no more’, as denoted by

[(This parrot) is (no more)].
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Calculating semantic vectors using random indexing of words in nar-
row context windows is done in two steps. First, an n-dimensional sparse
random vector called a random label is assigned to each word type in the
text data. These labels have a small number k£ of randomly distributed
—1s and +1s, with the rest set to 0. The present experiment utilized
1,800-dimensional labels with k& = 8.7 on average, with a standard de-
viation of £2.9. Thus a label might have, for example, four —1s and six
+1s. Next, every time a given word—the focus word f,—occurs in the
text data, the labels for the words in its context window are added to
its context vector. For example, assuming a 2 + 2 sized context window
as represented by:

[(Wn—2wn—1) fr(Wn11Wny2)]

the context vector of f,, would be updated with:
L(wp—2) 4+ L(wp—1) + L(wpy1) + L(wny2)

where L(z) is the label of 2. This summation has also been weighted to
reflect the distance of the words to the focus word. The weights were
distributed so that the words immediately preceding and succeeding
the focus word get more significance in the computation of the context
vectors. For the four different window sizes used in these experiments,
the window slots were given weights as follows:

1+1: [(1)0(1)]

2+ 2 [(0.5,1)0 (1, 0.5)]

343 [(0.25,0.5, 1) 0 (1, 0.5, 0.25)]
444: [(0.1,0.1,0.1,1) 0 (1,0.1, 0.1, 0.1)].

The rationale for these operations is that a high-dimensional context
vector, by effectively being the sum of a word’s local contexts, represents
the word’s relative meaning. This means that we will be able to model
word content with some confidence. But texts are more than words and
their content.

26.6 What Is Text, from the Perspective of Linguistics?

The model described above covers much of what we want in terms
of human linguistic behavior. But what we know about language and
text certainly motivates a more sophisticated model than set theory
on the level of word occurrences. Linguists treat linguistic expressions
as being composed of words that form clauses that in turn form text
or discourse. Words have predictable situation-, speaker-, and topic-
independent structure that is described formally. Clauses have largely
predictable situation-, speaker-, and topic-independent structure that
is described formally. This is how far formal linguistic analysis takes
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us. Attempts at formal analysis at the next level—of text and topic
structure—have been only partially successful. Texts have largely un-
predictable situation-, speaker-, and topic-dependent structure, which
cannot be handled adequately with the theoretical apparatus available
to us today. Clause structure is connected only indirectly to topicality:
mostly it accounts for the local organization of the clause. However, the
invariant and predictable nature of clause structure certainly encour-
ages further attempts at building theories that relate meaning to clause
structure, and it would be foolish to build a text model that can take
no account of recent advances in formal analysis of text structure.

26.6.1 Beyond Word Co-occurrence—Implementing
Linguistics

The only property of text that is being utilized in the creation of the
context vectors is the distributional patterns of linguistic entities. This
comprises, however, only a small fraction of the structural complexity
of large texts. There are other inherent structural relations in natural
language that might be significant for uncovering semantic information.
The distributional hypothesis does tell a story about the foundation of
meaning, but it might not tell the whole story. If the overall goal of the
research is to understand how meaning resides in language, and how to
implement linguistic knowledge about meaning in computers, it seems
unmotivated not to take these more complex linguistic features into ac-
count. Therefore, we have evaluated the method using different degrees
of linguistic preprocessing of the training data, such as morphological
analysis and part-of-speech tagging, with the intention of investigating
whether the utilization of more sophisticated linguistic information in
some way concretizes the semantic information captured in the context
vectors. To ensure state-of-the art performance in linguistic analysis, we
used the functional dependency grammar of English—the FDG parser—
developed by Conexor to analyze the text and its words (Jarvinen and
Tapanainen, 1997).

26.7 The TOEFL-Test

To repeat the fundamental hypothesis of this investigation, the raison
d’étre of the high-dimensional context vectors described in above sec-
tions is that they represent the relative meaning of words, and that they
therefore can be used to calculate semantic similarities between words.

We will verify this hypothesis by letting the system perform a syn-
onym test. One such test is TOEFL (test of English as a foreign lan-
guage), which is a standardized test employed, for example, by American
universities to evaluate foreign applicants’ knowledge of the English lan-
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guage. In the synonym-finding part of the test, the test taker is asked to
find the synonyms to certain words. For each given word, a choice from
four alternatives is provided, where one is the intended synonym and is
supposed to be indicated by the person taking the test. In the present
experiment, 80 test items of this type were used.

When performing the synonym test, the system simply calculates the
distances (the cosine of the angle between context vectors) between the
target word and the four alternatives and gives the highest-ranking al-
ternative as its answer (i.e. the one that correlates most closely with the
target word).

26.8 Experimental Set-Up

The text data used as learning material for the system was a ten-million-
word corpus of unmarked English with a vocabulary of 94,000 words.
In the first stage of preprocessing the number of unique word types
was reduced based on frequency, by weighting the least and the most
frequent words with 0 when they appeared in the context window. A
frequency range of 3-14,000 was used and resulted in a vocabulary of
51,000 words. Next, a rather crude method for morphological analysis
was implemented by truncating the words. The idea was to approximate
word stems by simply chopping off the words at a certain predefined
number of letters. In the present experiment, truncation lengths of 6, 8,
10, and 12 were used. As a comparison to the crude truncation approach
to morphology, the the Conexor FDG parser was used to analyze the text
initially and extract the base form of each word.

The Conexor FDG parser was also used to supply the analyzed text
(the text consisting of proper word stems) with part-of-speech informa-
tion in an attempt to deal with the ever-present ambiguity of languages,
the problem being that the same “word” can have several meanings,
and many of these orthographically identical but semantically dissimilar
words belong to different parts of speech. For example, roll can be used
as a verb or as a noun. Providing part-of-speech information by sim-
ply adding the part-of-speech tag to the beginning of each word would
enable the system to detect this kind of ambiguity and to discriminate
between these words. For example, the verb roll would become wroll,
whereas the noun roll would become nroll.

26.9 Results and Analysis
The results of the TOEFL-test are summarized in table 26.1. The num-
bers in the cells are averages over five runs. The standard deviation for

these results is +1.5. All results are given in percent of correct answers
to the TOEFL-test. The numbers in boldface are the results from ex-
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TABLE 26.1

Average Results (£1.5) in Percent of Correct Answers to the TOEFL-test
Tr. means truncation length, WS means ‘word stems’, and PoS+WS
means ‘part-of-speech tagged word stems’.

Linguistic Context window Average
analysis 141 242 343 444 | (£0.73)
None 64.5 67.0 65.3 65.5 65.6
Tr. 6 55.0 57.5 57.3 55.3 56.3
Tr. 8 61.5 64.3 62.0 63.3 62.8
Tr. 10 66.0 68.5 66.3 66.3 66.8
Tr. 12 64.8 65.3 63.8 64.8 64.6
WS 63.5 70.8 72.0 66.0 68.1
PoS+WS | 66.0 64.5 65.0 65.5 65.3
Average 63.0 654 645 63.8

(£0.56)

periments with linguistically analyzed text. By comparison, tests with
LSA on the same text data, using the LSIBIN program from Telecordia
Technologies, produced top scores at 600 factors of 58.75% using the
unnormalized words-by-documents matrix, and 65% using a normalized
one. The average result reported by Landauer and Dumais (1997) with
LSA (using normalization and different text data) is 64.4%, while foreign
(non-English-speaking) applicants to U.S. colleges average 64.5%.

These results indicate that high-dimensional random labeling of words
in narrow context windows captures similarity relations between words
just as effectively as singular-value decomposition of the words-by-docu-
ments matrix does (e.g. LSA), as measured by a standardized synonym
test. Without using linguistic information, the system averages 65.6%
over the four different window sizes used in these experiments. However,
already when utilizing a rather naive kind of morphological analysis in
the form of carefully applied truncation (using a truncation length of
10 characters), the system’s average result increases to 66.8% correct,
although it seems imperative not to truncate too early, since this gravely
affects the results. Shortening the truncation length to eight characters
decreases the result to 62.8%, and shortening it to six renders a mea-
ger 56.3%. Extending the truncation length to twelve characters also
decreases the result, with a 64.6% average.

The best results were produced by proper stemming of words, which
yields 68.1% correct on the average. This indicates that since the inclu-
sion of morphology in the form of proper word-stem analysis or care-
fully applied truncation yields the best overall results, taking advantage
of other inherent structural relations in text, in addition to the distri-
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butional patterns of linguistic entities, really might be significant for
uncovering semantic information from text data. However, adding part-
of-speech information did not further improve the performance. The av-
erage result when adding part-of-speech information to the morphologi-
cally analyzed text drops to 65.3%. This could be a result of the increase
in the size of the vocabulary, which is the consequence of supplying part-
of-speech information for each word.

Turning now to the different window sizes, the table shows that a min-
imal context window with just one word on each side of the focus word
yields the worst average result. This might not be surprising, since it
seems reasonable to assume a priori that a minimal context window will
not provide enough contextual information for making the comparison
of distributional similarity reliable. This assumption is not categorically
supported by the results, however, since for the part-of-speech-tagged
word stems, a 1 4 1 sized context window actually produces the best
average result. The results peak in the range of two to three words on
each side of the focus word, with a 2 + 2 sized context window pro-
ducing the best average result of 65.4%, but with a 3 + 3 sized context
window producing the best individual result of 72% using the morpho-
logically analyzed text. A 4 + 4 sized context window is only slightly
better (63.8%) than the minimal context window, and our experiments
with context windows exceeding four words on each side of the focus
word gave much lower scores.

26.10 Some Cognitive Implications

The results from these experiments demonstrate that the technique is
capable of achieving comparatively good results on a standardized syn-
onym test. The test is designed to measure word knowledge, which would
indicate that any subject capable of performing the test with scores
above the level of guessing (which statistically would yield 25% correct)
possesses a certain amount of linguistic knowledge about word mean-
ings. Therefore, the test could also be seen as a rudimentary intelligence
test. Landauer et al. (1998) point out that “word-word meaning simi-
larities are a good test of knowledge—indeed, vocabulary tests are the
best single measure of human intelligence.”

The results achieved in these investigations are approximately parallel
to the results accomplished by foreign applicants to American universi-
ties. The question is, then, if the results, viewed from this perspective,
justify the conclusion that the system has acquired and applied linguis-
tic knowledge (about word meanings)? Do the high-dimensional random
distributed representations constitute a viable model of semantic knowl-
edge? In short: What are the cognitive implications of the accomplish-
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ments of the system?

The keyword in this discussion is functionality. The performance of
the system could be described as functionally equivalent to the linguistic
behavior of a human language user in carrying out the specific predefined
linguistic task of picking out synonyms of a target word. This means that
since the system’s internal representations in the form of context vec-
tors have been proven (by the successful execution of the TOEFL-test)
to be functional for purposes pertaining to linguistic competence, we
may describe the system as having acquired and applied the computa-
tional equivalent of the linguistic knowledge that humans possess when
discriminating between word meanings.

This characterization of the system means that the relevant question
is not whether the system’s internal representations of word meanings
actually mean anything (i.e. if they somehow correspond to how word
meanings are represented in the human mind—assuming this question is
meaningful), but rather whether they can be wutilized for the purpose of
modeling observable linguistic behavior. The semantic information that
the context vectors carry does not reside in the vector representations
alone, but rather in the relations between the vectors. The representa-
tion is relative rather than absolute, since it is only in relation to each
other that the context vectors mean anything. The important point is
therefore that the system’s internal representations can produce linguis-
tic behavioral patterns that manifest semantic knowledge—and that can
be regarded a fragment of the functionality of a language user. In other
words: It is by virtue of letting the meaning of ‘meaning’ remain indeter-
minate that we may consider the implementation of a functional pattern
as an epistemic or cognitive achievement.

26.11 Implications for Information Access

More concretely, for immediate attention, if we wish to improve on
information-access systems—if we use the standard architecture as de-
lineated in the beginning of this chapter—there are three access points,
points where the character of the internal text representation influences
the working of the system as a whole, and points where a more adaptive
and humanlike processing would make a difference:

1. the intelligent selection of document descriptors for each docu-
ment;

2. the flexible internal expression of those items; and

3. the negotiable elicitation of information needs from the reader.

And this functionality should not be restricted to a single language.
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26.12 Meaning in Text

The reason for using narrow context windows to calculate semantic word
vectors as opposed to using whole documents, as in LSA, is the assump-
tion that the semantically most significant context is the immediate
vicinity of a word. That is, one would expect the words closest to the
focus word to be more important than the words further away in the text
for determining the meaning of the focus word. The intuition is that a
local context is more reliable for measuring semantic similarity between
words than a large context region spanning hundreds of words.

This intuition is expressed, for example, by Lin (1997), who states that
“two different words are likely to have similar meanings if they occur
in identical local contexts.” Schiitze and Pedersen (1997) argue that
local co-occurrence statistics are both qualitatively and quantitatively
more informative than document-based co-occurrence statistics, since
the number of co-occurrence events will be higher when using a sliding
window to define the co-occurrence region than when using documents,
especially if the documents are long. Burgess and Lund (2000) also report
on the merits of narrow context windows.

If the assumption is correct that local co-occurrence statistics give a
more reliable measure of distributional similarity between words than
do document-based co-occurrences, one should be able to discern an in-
crease in performance when using narrow context windows, as opposed
to documents, for calculating the semantic word vectors. The results of
our experiments seem to favor this assumption. Compared to the per-
formance of techniques based on context regions in excess of a hundred
words, such as LSA, narrow context windows perform well in at least
one linguistic task (TOEFL) pertaining to lexical semantic knowledge.

This improved performance raises the question of whether there might
be a difference in what sort of semantic information can be extracted
by considering different amounts of context. A larger context might give
better clues to what a particular word is about than to what it means.
The idea is that two words that are about similar things will occur in
similar context regions (e.g. documents), while two words that have simi-
lar meanings will occur with similar context neighbors (i.e. words). This
means that larger contexts might be more suited for tasks pertaining
to topical information, such as information retrieval, than in tasks di-
rected specifically toward lexical semantic competence. The applicability
of LSA to information retrieval is well documented (e.g. Dumais et al.,
1988; Deerwester et al., 1990), supporting this assumption.

The possibility of a discrepancy between the kinds of semantic infor-
mation carried by different context sizes suggests that although a syn-
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onym test is a fairly reliable method for measuring one kind of semantic
knowledge, other conceivable methods for measuring semantic knowl-
edge might be worth considering. Other evaluation procedures have been
reported in the literature, such as comparing vector similarities with re-
action times from lexical priming studies (Lund and Burgess, 1996) or
using LSA for evaluating the quality of content of student essays on
given topics (Landauer et al., 1997).

Meaning, the main object of our study, is most decidedly situation-
dependent. While much of meaning appears to achieve consistency across
usage situations, most everything can be negotiated on the go. Human
processing appears to be flexible and oriented toward learning from
prototypes rather than learning by definition: Learning new words and
adding new meanings or shades of meaning to an already known word
do not require a formal retraining process. And, in fact, natural use of
human languages does not make use of definitions or semantic delimita-
tions; finding an explicit definition in natural discourse is a symptom of
communicative malfunction, not of laudable explicitness.

A text model should model language use rather than language in the
abstract. We need a better understanding of how meaning is negotiated
in human language usage: Fixed representations do not seem practical
and do not reflect observed human language usage. We need a more
exact study of inexact expression, of the homeosemy (‘homeo’ from Greek
homoios similar) or near and close synonymy of expressions of human
language. This means we need to understand the temporality, saliency,
and topicality of terms, relations, and grammatical elements—it means
modeling the life cycle of terms in language, the life cycle of referents in
discourse, and the connection between the two. These experiments have
taken but some first steps in that direction.
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