Inferring Complex Plans

Kristina Hook, Jussi Karlgren, Annika Waern
Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden
kia@sics.se, jussi@dsv.su.se, annika@sics.se

January 1993

Abstract

We examine the need for plan inference in
intelligent help mechanisms. We argue that
previous approaches have drawbacks that
need to be overcome to make plan inference
useful. Firstly, plans have to be inferred -
not extracted from the users’ help requests.
Secondly, the plans inferred must be more
than a single goal or solitary user command.

Keywords

Plan inference, interactive help systems,

configuration problem

INTRODUCTION

Plan inferencing is the task of detecting
what the current goal of a user is, and what
plan she is carrying out to fulfil this goal.
Plan inference is a theoretical tool in sev-
eral different research areas in cognitive psy-
chology and linguistics to explain processes
of understanding and language production,
and more generally, to explain the underly-
ing processes in human action and behav-
ior. In this type of research, the formaliza-
tion of plan inference has as its main pur-
pose to provide explanatory strength. In
computer science, the study of plan infer-
ence has a different purpose: to examine how
plan inference can be used in practice for
speeding up computations or making com-
puter systems more user friendly: to pro-

vide computational efficiency. As computer
scientists, the two questions regarding plan
inference we must ask ourselves are then “In
what type of situations is plan inference use-
ful?” and “Can plan inference processes be
designed to be efficient?”

In this paper we argue that plan infer-
ence under certain conditions indeed is both
useful and feasible. We give an example
of a type of interactively solvable problems
where the system will have more use of and
practical possibilities to perform plan infer-
ence than in the traditional interactive ap-
plications of today: configuration of interac-
tive systems to suit specific needs of specific
users.

This type of problem is likely to become
more prevalent in future applications. As
an example domain for configuration prob-
lems we give systems for management of
electronic mail messages.

We find that the suggestions found in
the existing literature on plan inference all
have shortcomings that make them unfea-
sible for practical usage in building interac-
tive systems. We end the discussion by some
specifications of the functionality we need,
and a set of problems that must be over-
come in order to yield a feasible solution to
the problem.

Do People Use Plan Inference?

Human agents are able to perform a substan-
tial amount of communication without seem-



ing to use plan inference. That people get by
without doing much plan inference has to do
with the fact that people are people, and we
all have the same processing units. Inferring
plans for an agent with a similar inferencing
process as oneself is naturally easier than if
one has to assume the possibility of com-
pletely different processes. When communi-
cating with another person, we can assume
that our counterpart reasons and acts the
same way we would, and our interpretation
of utterances and actions is guided by what
we would have done ourselves in the same
situation.

The less evidence we have of a com-
mon ground and common understanding,
the more difficult becomes the communica-
This scale of processing mutualness
comes to an extreme case when the coun-
terpart is a machine. Several usual features
of discourse disappear: users seem to feel
little need to produce connected discourse
(Dahlback, 1991). The working mechanisms
of a computer system are very different from
human thinking, and users know it (Joshi,
1982; Karlgren, 1992) When working with a
computer system, users must have a complex
and conscious understanding of the system’s
functionality, such as of what tasks it can
perform and how and when it goes about to
perform them. The converse is also true: for
a computer system to act in a usefully user-
adapted way, it should be equipped with an
understanding of what users can do, and
made capable of understanding of how and
when they do what.

tion.

Space of Possible Plans Is The
Problem

Human agents have a hierarchy of goals
for every action they perform, ranging from
trivially high level goals such as having a
good time, procreating, and reaching a state
of grace on the one hand, to trivially low
level goals on the other; for example, if a
person queries the time from somebody else,
her immediate goal is to find out what time

it 1s. Neither of these extremes are interest-
ing for the immediate purposes of building
better interactive interfaces. The interesting
goals from a system engineering perspective
are goals that immediately subsume the ac-
tions a user performs at an interface.

Given a system with a specific function-
ality - interpreted as a set of possible and
conceivable goals - the possibility of inter-
preting a sequence of actions as an attempt
to fulfil a goal or a set of goals varies with
the expressivity of the interaction language.
A system with a very complex functional-
ity and a low level interaction language will
have more trouble inferring an appropriate
goal than a system with the same function-
ality and an interaction language which al-
lows and handles commands or expressions
on a higher level. Similarly, a system with a
small range of functionalities will have less
trouble inferring goals than a system with
large range of possible tasks.

Intelligent Help

Intelligent help systems are intended to pro-
vide on-line help to users making use of the
current context, the users’ own expertise,
and the users’ current intentions. Worded
differently, an intelligent help system under-
stands what users are trying to do and gives
help for that rather than for what they are
actually doing. Intelligent help in our terms
is thus an almost canonical example of an
application domain in which plan inference
is needed.

The Configuration Problem

Almost every word processor and operating
system affords the user the opportunity to
tailor or configure the system according to
preferences by installing an init or profile
file or some other means. For frequent users
this is a powerful way of creating an environ-
ment to feel comfortable with. For sporadic
users there usually i1s a default behavior that
can be used: changing profile files 1s difficult



for these users (Kass, 1991). In our present
work we have found applications within the
communication area where configuration is a
part of the system functionality rather than
simply a feature for frequent users. Exam-
ples are advanced storage systems for elec-
tronic mail, computer supported cooperative
work, multimedia communication, etc. For
such communication tools the configuration
cannot simply be left as a default, since the
environment in which we communicate will
change over time.

In these applications the configuration
task is necessary to perform even for non-
expert users, and thus the need for interac-
tive help and guidance increases. We expect
plan inference to be feasible for this purpose,
since system configuration is a task in which
the command language is fairly high level,
while the functionality is reasonably narrow-
scope.

EXISTING APPROACHES

Plan inference is used to deduce the under-
lying intentions of queries posed. But how
much of a plan is in fact inferred? Looking
closer at work in this research area we find
firstly that the plans inferred are plans only
in a very limited sense, and that the infer-
ence done is of a very simplistic kind.

Plan Debugging

One important use of the inferred plans is
to debug them, that is, recognize when a
user has an faulty or suboptimal way to ful-
fil a certain goal. This task has been tack-
led by Pollack (1986). Although interesting,
Pollack’s work has some shortcomings which
makes it insufficient for the intelligent help
domain. Firstly, with Pollack’s approach
no real plan inference is really taking place.
In fact, she assumes that the whole plan 1is
stated by the user in the questions posed to
the help system. (This problem has been
partly addressed in later work (Konolige and
Pollack, 1989). )

Secondly, the plans investigated are so-
called simple plans where one act generates
the rest of the acts. This definition means
that the user of the system will only perform
one action whereupon the rest of the actions
will happen automatically. Plans where one
action will set up the context for the next
action necessary to achieve the goal (enable-
ment), are not dealt with in her work.

The “Buggy Model” Approach:
Eurohelp

Systems that use true plan inference usu-
ally rely on the so-called “buggy model” ap-
proach. In this approach, the system moni-
tors the actions of the user, constantly try-
ing to infer the goal the user is trying to
reach. The help system contains a library of
correct plans as well as incorrect and non-
optimal plans, and matches the sequence of
user actions against these in order to find
one that fits. In fact, this way of doing plan
inference might just as well be called pattern
matching. No construction of plans is taking
place.

The buggy model approach to plan infer-
ence has been used for intelligent help in the
EUROHELP project (Breuker et al, 1987).
The purpose of this project was to construct
an application-independent shell for intelli-
gent help. As we know of no substantial ap-
plications where this shell has been used, it
1s difficult to say how successful the EURO-
HELP plan recognition attempt was.

The main critique against this model for
plan inference is that the set of buggy and
suboptimal plans needs to be very large in
order to cover a useful set of user behavior.
This puts a large burden on the designer
of the plan library. Its design must also
be guided by knowledge of human cognitive
processes and by particular studies of the ap-
plication at hand in order to yield a useful
result.

An additional difficulty for the system
configuration task we are envisioning is the
dynamics of the system. The set of envision-



able goals and plans will change over time,
making it very difficult for a rigid, pre-pro-
grammed hierarchy to cope. In the extreme
case, even the alphabet of the command lan-
guage can change.

Natural Language Interface Sys-
tems

Work on natural language interfaces has de-
veloped from intrasentential syntactic and
semantical analysis to levels where prag-
matic analysis is necessary. Part of the prag-
matic analysis involves inferring goals that
a communicator has when producing an ut-
terance (Kaplan, 1982). A common strategy
used in this type of systems is to examine ut-
terances one at a time, and to classify them
according to their functional type: so called
speech act analysis. In the Unix Consultant
system UC, for instance, the underlying goal
is inferred from a single utterance or ques-
tion (Wilensky, 1983). Since the analysis is
based on single questions to a separate con-
sultant system, it requires either that the
user provides the context in the question
posed, or that the answer is not dependent
on knowing the context. The following ex-
ample shows a case where the context is pro-
vided by the user in the question itself (Chin,
1989):
I tried typing "rm foo"
but I got the message
"rm: foo not removed".

Although UC is capable of inferring the
goals of the user, it does not attempt to in-
fer the plans by monitoring the users actions
with the target system. This makes it dif-
ficult or impossible to correct the users be-
havior when attempting a goal by a faulty
plan. Plan inference would also make it pos-
sible to give correct answers to context de-
pendant help requests. Furthermore the UC
approach requires that the user is capable of
expressing her goal which may not always be
the case.

Example Scenario: Managing

Mail Messages

The example scenario in this section 1s a con-
figuration problem, where successful plan in-
ference would enhance the system function-
ality. It is based on PostMaster, a system for
managing electronic mail messages currently
under development at SICS. PostMaster is
similar to the Information Lens system de-
veloped at MIT, and does not provide help
based on plan inference (Malone et al, 1987).
Users can automatically sort their incoming
electronic mail using rules that they have
provided to the system. The rules utilize
information found in the header fields of the
messages. Example rules are shown in the
figure below. Assume that a user has cre-
ated a new mailbox named PPIG! and then
moved a set of old messages to it. She then
turns to the system with a vague help re-
quest:

"What now?"

IF sender OR receiver = Tom Ormerod
THEN put in folder Ormerod
IF sender = David Gilmore
THEN put in folder Gilmore

The system will search for a consistent
pattern in the actions the user has per-
formed. In this case, the user has moved
all letters from Tom Ormerod and David
Gilmore (who have one mailbox each) into
the new PPIG mailbox, excepting a subset
of letters which all contain the word ”work-
shop” in the subject header. Due to the in-
tended functionality of mailboxes, the sys-
tem knows that if a mailbox has been cre-
ated, there ought to be at least one rule rout-
ing letters to 1it. The system now assumes
that what the user wants to do is to reconfig-
ure the system, so that all letters that previ-
ously went to Tom’s and David’s mailboxes
now should go to the PPIG mailbox, possi-
bly excepting the ”workshop” letters. The

1Psychology of Programming Interest Group



system confirms its guess by asking?:

"Do you want to put all incoming
mail that previously went to the
’Ormerod’ and ’Gilmore’ mailboxes
into the PPIG folder?"

The user (relieved by the apparent under-
standing of her predicament) answers yes.
The system then creates a rule by merging
the old rules for the Ormerod and Gilmore
mailboxes and displays it for the user to edit.

PPIG-rulel:

IF sender OR receiver =
THEN put in folder PPIG
PPIG-rule2:

IF sender = David Gilmore
THEN put in folder PPIG

Tom Ormerod

Since the creation of these rules was based
on guessing the user’s goal of replacing the
Ormerod and Gilmore mailboxes by the
PPIG mailbox, the rules move a wider span
of mail to the new mailbox than was indi-
cated by the set of actions performed by the
user. For example, the user may not have
moved any mail where Tom Ormerod only
was a receiver.

But the problem is not yet solved com-
pletely - the letters with ”workshop” in the
header were not moved. What does the user
want with these letters? The system asks
again:

"Do you want to do anything
particular with letters to
the PPIG folder, if the header
contains the word "workshop"?"

The user now replies

"PPIG workshop dates should also
be added to my calendar."

?In the example we use an interaction language
resembling written English to make the help func-
tionality clear. This may not necessarily be the best
choice for an interactionlanguage, but this issue will
not be explored further here.

This causes the system to create and display
the rule

IF

PPIG-rulel OR PPIG-rule2 applies
AND

subject contains ¢
THEN

put in folder PPIG

‘workshop’’

AND
start calendar program

Potentially, it could also interpret the an-
swer as an implicit request to perform this
rule on the letters remaining in the old fold-
ers. Finally, the functionality of the old
mailboxes of Ormerod and Gilmore i1s now
completely redundant, and if the system was
right in its guess, these should be deleted.
The system asks:

"Do you want to delete the
folders ’Ormerod’ and ’Gilmore’?"

If the answer is yes, the system deletes
these folders and the rules routing letters to
them.

In this scenario, the fact that a config-
uration was needed was inferred from the
user using the system in a recognizable man-
ner, together with the fact that the user re-
quested help. The configuration goal was
correctly understood, and required a whole
set of actions in order to be consistently ful-
filled, some of them in a particular sequence.

Necessary Functionality

We have already stated that we expect plan
structures to contain actions related not only
by generation but also by enablement. We
have also claimed that the system should not
be dependent on every possible plan being
explicitly represented and preconceived in
order to be recognizable. The system must
be able to reason backwards from the ac-
tions of the user, infer a goal or a set of goals
that is compatible with the actions, instead



of requiring that the plan is stated in the
question posed.

These properties are not easy to achieve.
The system must be able to recognize incor-
rect and suboptimal plans: a sequence of ac-
tions by the user may not always be directed
towards a single simple goal. The user may
interleave several tasks, or abandon a task in
mid-plan to start another. Typically, the set
of user actions involved in fulfilling a goal is
small, and even if the required set of actions
is large, we want to recognize this fact early
in order to give appropriate help. This im-
plies that the system must be able to pick
up a plan from very few user actions.

Necessary Functional Architec-
ture

To avoid the plan library problem, we pro-
pose to partition the domain knowledge into
two more basic types of knowledge: a library
of primitive actions, and their preconditions
and effects, and a structured knowledge,
possibly a goal taxonomy resembling Wilen-
sky’s (1983), consisting of the goals and sub-
goals the user may want to fulfil or maintain
when using the system.

The difficulty now becomes how to con-
nect the users’ actions to a goal in the goal
hierarchy. The observed sequence of user ac-
tions must be matched against the possible
set of goals by bottom-up planning. This
matching should be based both on objective
goal fulfilment or enablement, but also on
cognitive knowledge about what users might
think would fulfil or partially fulfil a goal.
This knowledge can be obtained by empir-
ical studies of the target system at hand, but
it is also possible to draw upon general prin-
ciples from cognitive psychology, yielding a
result that is transferable between applica-
tions.

The goal structure and the action library
can be changed independently of each other
which will allow for a more dynamic system:
the potential learning capacity of the system
will be larger using this approach.

References

Joost Breuker, Radboud Winkels and Ja-
cobijn Sandberg, A Shell for Intelligent
Help Systems, in IJCAI, 1987, pp. 167-
173.

Chin, David N., KNOME: Modeling What
the User Knows in UC, in User Mod-
els in Dialog Systems, Alfred Kobsa
and Wolfgang Wahlster (eds), Springer-
Verlag, Berlin-New York, 1989, pp. 74-
107.

Dahlback, Nils, Representations of Dis-
course - Cognitive and Computational
Aspects, Linkoping Studies in Arts and
Science 71, Linkoping Studies in Science
and Technology 264, Doctoral thesis at
Linkoping University, 1991

Joshi, Aravind K., Mutual Beliefs in Ques-
tion-Answering Systems, in N. V. Smith
(ed.), Mutual Knowledge, Academic
Press, London 1982

Jussi Karlgren The Interaction of Discour-
se Modality and User FEzpectations
. Human-Computer Dialog, Licenti-
ate Thesis at the Department of Com-
puter and Systems Sciences, University

of Stockholm, 1992

Kaplan, S. J., Cooperative Responses from
a Portable Natural Language Database
Query System, Artificial Intelligence,
19:2, 1982, 165-188.

Kass, Robert, Building a User Model Impli-
citly from a Cooperative Advisory Dia-
log, User Modeling and User-Adapted
Interaction, 1:3, 1991.

Konolige, Kurt and Pollack, Martha, As-
cribing Plans to Agents: Preliminary

Report, in IJCAI, 1989, pp. 924-930.

Malone, Thomas W., Grant, Kenneth R.,
Turbak, Franklyn A., Brobst, Stephen
A., and Cohen, Michael D., Intelligent



Information-Sharing Systems, Commu-

nications of the ACM, 30:5, 1987.

Pollack, Martha, A Model of Plan Inference
that Distinguishes between the Beliefs
of Actors and Observers, in Proc. of

the 24th Annual Meeting of ACL, 1986.

Wilensky, Robert, Planning and Under-
standing: A Computational Approach
to Human Reasoning, Addison-Wesley
Publ. Comp., Reading, Massachusetts,
1983.



